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ABSTRACT

Urban and transportation research has long sought to uncover
statistically meaningful relationships between key variables and
societal outcomes such as road safety, to generate actionable in-
sights that guide the planning, development, and renewal of urban
and transportation systems. However, traditional workflows face
several key challenges: (1) reliance on human experts to propose
hypotheses, which is time-consuming and prone to confirmation
bias; (2) limited interpretability, particularly in deep learning ap-
proaches; and (3) underutilization of unstructured data that can
encode critical urban context. Given these limitations, we propose
a Multimodal Large Language Model (MLLM)-based approach for
interpretable hypothesis inference, enabling the automated genera-
tion, evaluation, and refinement of hypotheses concerning urban
context and road safety outcomes. Our method leverages MLLMs to
craft safety-relevant questions for street view images (SVIs), extract
interpretable embeddings from their responses, and apply them
in regression-based statistical models. UrbanX supports iterative
hypothesis testing and refinement, guided by statistical evidence
such as coefficient significance, thereby enabling rigorous scientific
discovery of previously overlooked correlations between urban
design and safety. Experimental evaluations on Manhattan street
segments demonstrate that our approach outperforms pretrained
deep learning models while offering full interpretability. Beyond
road safety, UrbanX can serve as a general-purpose framework
for urban scientific discovery, extracting structured insights from
unstructured urban data across diverse socioeconomic and envi-
ronmental outcomes. This approach enhances model trustworthi-
ness for policy applications and establishes a scalable, statistically
grounded pathway for interpretable knowledge discovery in urban
and transportation studies.
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1 INTRODUCTION

Understanding how the physical structure of cities shapes societal
outcomes is a foundational objective in urban science. Across fields
such as transportation, planning, and public policy, researchers have
long aimed to identify statistically meaningful links between urban
environments and key social indicators, including traffic safety [46],
BCorresponding Author. §Project: https://github.com/YihongT/UrbanX.git
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Figure 1: UrbanX: an interpretable, MLLM-powered frame-

work for hypothesis-driven urban scientific discovery.

walkability [11], equity [15], and environmental health [27]. A cen-
tral challenge in this endeavor is the pursuit of scientific discovery:
finding interpretable and generalizable factors that explain urban
phenomena and support data-driven decision-making [4]. Yet, this
process is often hindered by the complexity and heterogeneity of
urban form. Much of the relevant information exists in unstruc-
tured formats, such as street-level imagery, architectural designs,
and visual cues that capture human perceptions of space [6]. These
modalities are difficult to quantify and analyze using traditional
feature engineering or structured data pipelines.

Although recent advances have enhanced the use of data in
urban research, existing methodological pipelines still face funda-
mental challenges when it comes to discovering new, interpretable
factors from complex urban environments. Traditional approaches
typically rely on expert-curated variables, black box predictive
models, or handcrafted metrics to study specific urban dimen-
sions [19, 35, 44]. These strategies face three key limitations. First,
hypothesis generation is a manual and cognitively intensive pro-
cess that depends heavily on prior knowledge and is vulnerable to
confirmation bias [12]. Second, while deep learning methods offer
strong predictive capabilities, they often rely on latent represen-
tations, limiting their interpretability and scientific value. Third,
unstructured urban data, particularly SVIs, remains underutilized as
a source of meaningful variables. These data contain rich contextual
cues about urban and social space, yet current methods struggle to
extract structured insights from them [34]. Together, these limita-
tions constrain our ability to explore the urban hypothesis space at
scale and with transparency.
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Meanwhile, the emergence of foundation models, particularly
Large Language Models (LLMs) [29], has transformed the land-
scape of data-driven reasoning. These models are trained on large-
scale corpora of natural language and are capable of understanding,
generating, and reasoning with text in flexible and context-aware
ways [40]. Building on this progress, recent developments have ex-
tended the capabilities of LLMs to include visual and other modal-
ities’ inputs, giving rise to Multimodal Large Language Models
(MLLMs) [43, 49]. These models jointly process text and images,
enabling them to perform tasks such as visual question answer-
ing, open-ended scene interpretation, and multimodal reasoning
with minimal supervision. MLLMs can extract semantically mean-
ingful concepts from visual scenes and align them with natural
language in ways that reflect human-like understanding. Rather
than serving only as tools for visual perception or image classi-
fication, MLLMs can be used as semantic engines that generate
interpretable, human-aligned variables directly from raw visual
data. This capability opens a new avenue for scalable, transparent,
and cognitively grounded urban scientific discovery.

Building on this insight, we propose a new framework, UrbanX,
for interpretable, hypothesis-driven scientific discovery in urban
domains, powered by MLLMs. As shown in Figure 1, rather than
treating machine learning as a black box predictor, we reframe it
as a collaborative agent in the scientific process, one that can gen-
erate candidate hypotheses, operationalize them into interpretable
variables from structured and unstructured data, and evaluate their
statistical relevance to real-world outcomes. UrbanX introduces an
iterative structure: at each step, the model formulates hypotheses
as natural language queries, extracts semantically meaningful fea-
tures by applying MLLMs to unstructured inputs, and assesses their
explanatory power using interpretable statistical models. Hypothe-
ses with weak statistical support are pruned, and new ones are
proposed, allowing the system to gradually converge on a compact
set of variables that are human-aligned and empirically grounded.

We instantiate this framework in the domain of urban road safety,
a high-impact area where interpretability is essential for actionable
insight, and where the discovery of new, semantically meaningful
factors can directly inform planning and policy. We demonstrate
the effectiveness of UrbanX on a Manhattan case study, where it
discovers novel visual variables from SVIs that exhibit significant
correlations with crash rates. Our approach achieves predictive
performance superior to pretrained deep learning baselines such
as ResNet [17] and Vision Transformer (ViT) [9], while preserving
full transparency through interpretable variable construction and
attribution. Our work makes the following contributions:
• We formalize scientific discovery in urban domains as an infer-
ence problem over a hypothesis space, where each hypothesis
is a natural-language conjecture linking urban form to societal
outcomes. This framing enables machines to generate, test, and
refine hypotheses directly from structured and unstructured data,
offering a scalable foundation for data-driven urban science.
• We propose a novel use of MLLMs as semantic engines that
translate unstructured inputs (e.g., SVIs) into structured, inter-
pretable variables through natural-language hypotheses. This
approach bridges perception and statistical modeling within a
unified, human-interpretable framework and holds broad appli-
cability across urban and transportation research.

• Wedevelop a nonparametric, interpretable framework for hypoth-
esis inference, formulated as an iterative posterior approximation
over a hypothesis space. At each iteration, the framework gen-
erates new hypotheses, constructs semantically aligned embed-
dings, and evaluates variable significance using interpretable sta-
tistical models. This process enables scalable, statistically grounded,
and transparent discovery of novel urban factors while reducing
the human effort involved in the scientific discovery process.
• We apply our framework to study road safety in the Manhattan
area and demonstrate its ability to uncover novel, interpretable
visual variables that significantly correlate with crash rates. Our
approach outperforms strong vision baselines in predictive per-
formance while maintaining interpretability through hypothesis-
level attribution. Beyond this case study, our approach serves as
a general-purpose framework for scientific discovery in urban
domains, with the potential to reveal structured insights from
unstructured data across a wide range of socioeconomic and
environmental outcomes.

2 RELATEDWORK

2.1 Urban Scientific Discovery

The pursuit of understanding how urban form influences societal
outcomes, such as public health, equity, and road safety, is a cor-
nerstone of urban science and transportation research [2, 16]. Tra-
ditionally, this has involved developing statistical models to find
correlations between expert-defined built environment variables
and specific outcomes [33]. For instance, in road safety, studies
have long linked street design elements, traffic calming measures,
and infrastructure for pedestrians and cyclists to crash frequencies
and severity [10, 30, 46].

However, these conventional workflows face significant hurdles
in uncovering novel, interpretable insights from the complex urban
milieu. A primary challenge is the manual and intuition-driven
nature of hypothesis generation, which is often slow, susceptible
to researchers’ confirmation biases, and may overlook unconven-
tional relationships [44]. This reliance on pre-existing knowledge or
limited observations can constrain the breadth of scientific inquiry.

Furthermore, while advanced machine learning, particularly
deep learning, has shown promise in predictive tasks using ur-
ban data, such models often function as “black boxes” [13]. Their
internal representations are typically opaque, making it difficult to
understand which specific factors drive predictions or to extract
actionable, causal insights for urban planning and policy-making.
This lack of transparency can hinder trust and adoption, especially
in high-stakes decisions [5].

Another critical limitation is the underutilization of rich, unstruc-
tured data sources. SVIs encapsulate vast amounts of visual infor-
mation about the urban environment, from infrastructure quality
to perceived safety cues [6]. Yet, their integration into quantitative
analysis is hampered by challenges in image acquisition consistency,
quality, spatial-temporal variability, and the difficulty of system-
atically extracting meaningful, structured variables [37]. Existing
efforts to automate feature extraction from SVIs often rely on stan-
dard computer vision models that may not capture the nuanced,
context-specific attributes relevant to complex societal outcomes
without significant task-specific fine-tuning or annotation.
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Recent explorations into AI-driven scientific discovery have be-
gun to address some of these issues. For example, frameworks are
emerging that use large language models for causal inference in
urban contexts [44] or to assist in generating hypotheses in other sci-
entific fields by leveraging knowledge graphs alongside LLMs [25].
These works highlight a growing recognition of AI’s potential to
augment the discovery process, yet a dedicated, interpretable frame-
work for hypothesis inference directly from SVIs remains an open
area. Our work seeks to bridge this gap by leveraging MLLMs to
systematically generate and test interpretable hypotheses about the
urban environment’s impact on road safety.

2.2 Multimodal Large Language Models

The advent of Large Language Models (LLMs) has significantly ad-
vanced capabilities in natural language understanding, generation,
and reasoning [1, 41, 47]. Building upon this foundation, Multi-
modal Large Language Models (MLLMs) have emerged, extending
these powerful reasoning abilities to encompass multiple modalities,
most notably vision and language [36, 45, 49]. These models are
designed to jointly process and interpret information from textual
descriptions and visual inputs, such as images or videos.

Typical MLLM architectures integrate a pre-trained vision en-
coder with a pre-trained LLM [39]. A crucial component is the
vision-language connector module, which projects visual features
into a space compatible with the LLM’s word embeddings. This
connector can range from a simple linear projection layer, as seen
in early models like LLaVA [24], which can perform instruction-
aware visual feature extraction targeted by textual queries [23].
Training MLLMs often involves a multi-stage process: an initial
pre-training phase to align visual and language representations
using image-text datasets, followed by fine-tuning on multimodal
instruction-following datasets to enhance their ability to perform
specific tasks and engage in dialogue [31].

MLLMs have demonstrated remarkable capabilities across a wide
range of tasks, including visual question answering (VQA), im-
age captioning, multimodal dialogue, and complex visual reason-
ing [3, 38]. They can generate nuanced textual descriptions of im-
ages, answer questions about visual content, and follow instructions
that require grounding language in visual information. This ability
to extract semantically meaningful concepts from visual scenes
and align them with natural language is central to their potential.
Recent research also explores techniques like Optimal Transport
to achieve more interpretable semantic alignment between modali-
ties, allowing for insights into the MLLM’s reasoning process by
visualizing how visual and textual elements correspond [21]. This
is particularly relevant for applications requiring trustworthiness.

The application of MLLMs to automated scientific discovery is a
burgeoning field, with studies exploring their use for generating
novel research ideas, designing experiments, and even assisting in
writing scientific papers [14]. In urban contexts, vision-language
models have been used for tasks such as function inference from
street-level imagery [20]. However, the dominant focus in auto-
mated scientific discovery has often been on the novelty or effi-
ciency of hypothesis generation, rather than on the interpretability
of the generated hypotheses or the variables used, especially when
derived from complex visual data in specific domains like urban

science. Our framework distinctively proposes using MLLMs not
just as predictors or general-purpose reasoners, but as semantic en-
gines to derive interpretable, human-aligned variables directly from
unstructured visual data (SVIs) for statistically rigorous hypothesis
inference concerning road safety.

3 METHODOLOGY

3.1 Overview

Let D = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1 denote a dataset of 𝑛 SVIs 𝑥𝑖 and their as-
sociated road-level crash rates 𝑦𝑖 ∈ R. We define a hypothesis
spaceH comprising all natural-language queries that describe vi-
sually observable variables potentially related to road safety. Our
objective is to uncover an optimal subset of hypotheses H∗ =

{ℎ1, ℎ2, . . . , ℎ𝑘 } ⊂ H that captures meaningful visual semantics
from each SVI and enables interpretable, accurate prediction of
𝑦𝑖 . We formalize this as a posterior mode estimation problem over
the hypothesis space: H∗ = argmaxH′⊆H 𝑃 (H ′ | D) ∝ 𝑃 (D |
H ′) · 𝑃 (H ′), whereH ′ is a candidate hypothesis subset. The like-
lihood 𝑃 (D | H ′) captures how well the hypothesis-derived vari-
ables explain variation in crash rates, typically assessed via a regres-
sion model. The prior 𝑃 (H ′) encodes structural preferences over
hypothesis subsets and is implicitly governed by the generative
behavior of the MLLM. Each hypothesis ℎ 𝑗 ∈ H∗ corresponds to a
semantically meaningful question with a categorical answer that
could be inferred from an SVI using an MLLM. Applying these 𝑘
hypotheses to each image 𝑥𝑖 yields a 𝑘-dimensional interpretable
embedding 𝜙 (𝑥𝑖 ,H∗) ∈ R𝑘 , where each component reflects the
MLLM’s answer to the corresponding hypothesis. We denote the
complete embedding matrix as E ∈ R𝑛×𝑘 , where 𝑒𝑖 = 𝜙 (𝑥𝑖 ,H∗) is
the embedding vector for the 𝑖-th image.

Bayesian inference over all possible hypothesis subsets is compu-
tationally infeasible due to the combinatorial size ofH and the lack
of a tractable likelihood model. Instead, we adopt an approximate
inference strategy and frame the task as a nonparametric struc-
ture learning problem. Starting from an initial hypothesis setH0

sampled from an LLM, we iteratively refine the set by evaluating
each hypothesis using a linear regression model. For each hypoth-
esis ℎ 𝑗 , we assess the statistical significance of its corresponding
regression coefficient via a two-sided 𝑡-test under the null hypoth-
esis that the coefficient equals zero. This yields a 𝑝-value vector
P = {𝑝1, 𝑝2, . . . , 𝑝𝑘 }, where each 𝑝 𝑗 quantifies the probability of ob-
serving the estimated coefficient under the null. Hypotheses with
𝑝 𝑗 > 𝛼 (typically 0.05) are considered statistically insignificant
and are discarded. New hypotheses are generated to replace them,
forming an iterative process. This process constitutes a data-driven,
nonparametric approximation to Bayesian posterior inference over
the hypothesis space, guided by statistical evidence and LLM priors.
An overview of the UrbanX framework is illustrated in Figure 2.

3.2 Hypothesis Generation

A key challenge in data-driven urban science is formulating mean-
ingful and testable hypotheses that connect observable environmen-
tal variables to societal outcomes. In conventional workflows, this
process relies heavily on human intuition, expert-defined variables,
and domain-specific heuristics, creating scalability, objectivity, and
scope bottlenecks. To overcome these limitations, we propose LLMs
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as cognitive engines that can explore and articulate semantically
rich, visually grounded hypotheses about urban safety.

At each iteration 𝑡 , the framework refines the hypothesis set
H𝑡−1 using statistical evidence derived from the previous assess-
ment. For each hypothesis ℎ 𝑗 ∈ H𝑡−1, we compute a 𝑝-value 𝑝 𝑗
using a two-sided 𝑡-test on the coefficient estimated by a regression
model, where the input variable is derived from the MLLM-inferred
categorical responses to ℎ 𝑗 across all SVIs. The detailed procedure
for constructing hypothesis-driven embeddings is described in a
later subsection. Hypotheses with 𝑝 𝑗 > 𝛼 (typically 𝛼 = 0.05) are
considered statistically insignificant. While the prompt for the LLM
includes the full set of previous hypothesesH𝑡−1 and their 𝑝-values
P𝑡−1, only𝑚𝑡 new hypotheses are generated, where𝑚𝑡 equals the
number of pruned hypotheses. This maintains a fixed hypothesis
set size while ensuring that each iteration incorporates empiri-
cal feedback into the generative process. Formally, the hypothesis
generation step is given by:

H𝑡 ∼ LLM
(
PromptHypoGen (H𝑡−1,P𝑡−1,𝑚𝑡 )

)
, (1)

where𝑚𝑡 is the number of new hypotheses to generate. The prompt
is constructed to elicit𝑚𝑡 diverse, categorical, and visually inferable
questions that are relevant to crash prediction. By conditioning
on statistically grounded examples, the LLM acts as a posterior-
informed generator, implicitly sampling from a distribution biased
toward hypotheses that are both semantically coherent and empir-
ically promising. This design allows the system to balance explo-
ration of new concepts with exploitation of previously validated
structure, enabling effective refinement of the hypothesis space
over time. The full construction of the prompt used in this stage is
detailed in Appendix A.

This iterative, LLM-in-the-loop design ensures that hypothesis
generation is continuously shaped by empirical evidence, fostering
the discovery of novel but statistically grounded variables. The use
of in-context prompting enables controlled and diverse exploration
of the hypothesis space, avoiding redundancy and incorporating

feedback from previous evaluations. The generation process also
supports a nonparametric Bayesian interpretation: the LLM defines
a flexible, data-informed prior over hypothesis space, while sta-
tistical assessment provides approximate posterior guidance. This
synergy supports a principled and interpretable refinement of the
variable space over successive iterations. An illustration of this
process is shown in the left panel of Figure 2.

3.3 Embedding Construction

To leverage the generated hypotheses H𝑡 = {ℎ𝑡1, ℎ
𝑡
2, . . . , ℎ

𝑡
𝑘
} for

downstream modeling, we must transform their semantic content
into structured, machine-interpretable representations. Traditional
deep models rely on latent high-dimensional features extracted
from images, which lack transparency and hinder hypothesis-driven
analysis. In contrast, our goal is to construct a hypothesis-guided
embedding that is transparently aligned with the semantics of each
generated question. For each image 𝑥𝑖 , we use an MLLM to answer
all questions inH𝑡 based on the visual content of the image. These
categorical answers are then encoded into a 𝑘-dimensional vec-
tor 𝑒𝑡

𝑖
∈ R𝑘 , where each element corresponds to the response to

hypothesis ℎ𝑡
𝑗
. Formally, we define:

𝑒𝑡𝑖 ∼ MLLM
(
𝑥𝑖 , PromptEmbed (H𝑡 )

)
, (2)

where PromptEmbed (H𝑡 ) denotes the prompt that queries theMLLM
to answer all hypotheses inH𝑡 based on the visual content of 𝑥𝑖 .
This embedding ensures full semantic traceability and supports
interpretable downstream modeling.

This procedure yields a hypothesis-aligned, semantically inter-
pretable embedding for each image, where each dimension has
a well-defined linguistic meaning. It enables transparent variable
construction while supporting statistical assessment and iterative
refinement in subsequent stages. The embedding process is illus-
trated in the center panel of Figure 2.
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3.4 Hypothesis Assessment

Given the hypothesis-aligned embedding matrix E𝑡 ∈ R𝑛×𝑘 con-
structed from the current hypothesis set H𝑡 , the next step is to
evaluate the empirical relevance of each hypothesis in explain-
ing variation in segment-level crash rates. Rather than optimiz-
ing for predictive performance alone, our objective is to support
transparent, interpretable modeling that enables attribution of out-
comes to individual hypotheses. This is particularly important in
transportation and urban policy contexts, where analytical trace-
ability and explanatory clarity are essential for decision-making
and public accountability. To this end, we adopt linear regression
as the primary modeling framework. Each column of E𝑡 corre-
sponds to a hypothesis-specific variable derived from categorical
responses generated by the MLLM. We fit a linear model of the
form: 𝑦𝑖 = 𝛽0 +

∑𝑘
𝑗=1 𝛽 𝑗𝑒

𝑡
𝑖 𝑗
+ 𝜀𝑖 , where 𝑦𝑖 is the observed crash rate

for SVI 𝑥𝑖 , 𝑒𝑡𝑖 𝑗 is the value of the 𝑗-th embedding dimension for the
𝑖-th SVI, 𝛽 𝑗 is the corresponding regression coefficient, and 𝜀𝑖 is an
independent error term assumed to be normally distributed.

We then apply a two-sided 𝑡-test to each coefficient 𝛽 𝑗 to assess
the null hypothesis that 𝛽 𝑗 = 0, using standard errors estimated
from the fitted model. This yields a 𝑝-value 𝑝𝑡

𝑗
that quantifies the

likelihood that the observed effect could arise under the null. Collec-
tively, the vector P𝑡 = {𝑝𝑡1, 𝑝

𝑡
2, . . . , 𝑝

𝑡
𝑘
} summarizes the statistical

significance of each hypothesis in H𝑡 . Hypotheses with 𝑝𝑡
𝑗
> 𝛼

(typically 𝛼 = 0.05) are considered statistically insignificant and
are pruned in the next round. The number of such hypotheses,𝑚𝑡 ,
determines how many new hypotheses are generated in the subse-
quent iteration. Fitting the regression modelM to the embedding
matrix E𝑡 yields both fitted outcomes and statistical estimates of
hypothesis relevance:

{𝑦𝑖 }𝑛𝑖=1, {𝛽 𝑗 , 𝑝
𝑡
𝑗 }
𝑘
𝑗=1 ←M(E

𝑡 ), (3)

whereM denotes the linear regression model applied to the em-
bedding matrix E𝑡 .

This assessment step plays two complementary roles within
the overall framework. First, it provides a quantitative basis for
interpreting the influence of each hypothesis on crash outcomes,
enabling transparent attribution and variable importance compar-
isons. Second, it functions as a mechanism for iterative hypothesis
refinement, systematically pruning low-utility hypotheses and in-
forming the next round of LLM-based generation. The right panel of
Figure 2 illustrates this process within the broader iterative pipeline.

3.5 Iterative Posterior Approximation

The overall framework is executed through an iterative loop that
approximates posterior inference over the hypothesis space by
alternating between generation, embedding, and statistical assess-
ment. This process reflects a structure-learning approach where
hypothesis subsets are progressively refined based on empirical
evidence. Unlike standard optimization methods such as gradient
descent [32] or expectation maximization [28], where the objective
function is guaranteed to monotonically improve, our setting in-
volves sampling from a nonparametric, LLM-driven space that lacks
such guarantees. To mitigate the risk of degeneracy or performance
collapse, we adopt a conservative update rule: new hypothesesH𝑡

Algorithm 1 Iterative Posterior Approximation

Require: Dataset D = {(𝑥𝑖 , 𝑦𝑖 )}𝑛𝑖=1; number of total hypotheses
𝑘 ; number of iterations 𝑇 ; interpretable modelM

Ensure: Final hypothesis setH𝑇 and embedding matrix E𝑇
1: InitializeH0 ∼ LLM(PromptHypoGen (𝑘))
2: for 𝑡 = 1, 2, . . . ,𝑇 do

3: H𝑡 ∼ LLM(PromptHypoGen (H𝑡−1,P𝑡−1,𝑚𝑡 ))
4: E𝑡 =

{
𝑒𝑡
𝑖
= MLLM(𝑥𝑖 , PromptEmbed (H𝑡 ))

}𝑛
𝑖=1

5: {𝑦𝑖 }𝑛𝑖=1,P
𝑡 ←M(E𝑡 )

6: end for

are only retained if they yield improved predictive performance on
the validation set compared to the previous iteration.

Algorithm 1 outlines the overall iterative procedure. In each
iteration, insignificant hypotheses from the previous setH𝑡−1 are
filtered based on their 𝑝-values P𝑡−1. The remaining hypotheses
serve as context for LLM-based generation of new candidates. The
resulting hypothesis setH𝑡 is then used to construct interpretable
embeddings E𝑡 via MLLM-based reasoning, which are subsequently
used to train an interpretable model and evaluate statistical sig-
nificance. This iterative process continues until convergence or a
predefined number of iterations.

4 EXPERIMENTS

4.1 Settings

Our study focuses on road segments in Manhattan, New York City,
using crash records, traffic volume data, and street-view imagery
from 2013 to 2019. For each road segment, we compute the crash rate
following the works [18, 46, 48] as:𝐶𝑅𝑖 = No_crash𝑖

𝐴𝐴𝐷𝑇𝑖×𝐿𝑖× 365
1,000,000

, where

No_crash𝑖 denotes the average annual number of crashes, 𝐴𝐴𝐷𝑇𝑖
is the average annual daily traffic, and 𝐿𝑖 is the segment length in
kilometers. Crash records were obtained from NYC Open Data, and
𝐴𝐴𝐷𝑇 data was sourced from the New York State Department of
Transportation. We sampled SVIs at 15-meter intervals along road
centerlines using ArcGIS [42], retrieving images via the Google
Street View API. After filtering and processing, 16,000, 2,000, and
2,000 panoramic SVIs were used for training, validation, and testing,
respectively. Unless otherwise specified, we use GPT-4o [22] as the
LLM for hypothesis generation and InternVL2.5-78B [7] as the
MLLM for answering hypotheses over images during embedding
construction. We deploy MLLMs using LMDeploy [8], an optimized
inference engine for serving MLLMs efficiently.

To support downstream evaluation and comparison, we also
compile 58 conventional built environment variables from pub-
lic sources. These include five categories: (1) road attributes (e.g.,
width, highway indicator), (2) land use (six category proportions
and entropy), (3) point-of-interest (POI) features (density and dis-
tance for 13 POI types), (4) traffic-related facilities (e.g., crossings,
bus stops, junctions), and (5) visual indices derived from panop-
tic segmentation of SVIs (e.g., proportions of sky, road, building,
and vegetation pixels). A full list and description of these variables
is provided in Table 1 in Appendix B. These features are aggre-
gated from multiple sources, including NYC Open Data, PLUTO,
CommonPlace, Geofabrik, and the Google Street View API.
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Figure 3: Performance comparison between ResNet, ViT, and

our interpretable embedding-based models using linear re-

gression (LR) and LightGBM (LGBM).

In our primary modeling pipeline, only the LLM-generated hy-
potheses and MLLM-derived interpretable embeddings are used for
prediction. Built environment variables are used exclusively in post
hoc SHAP analysis to compare their relative explanatory power
against discovered hypotheses.

4.2 Predictive Performance

We first evaluate the predictive performance of our interpretable
embedding framework by comparing it with conventional vision-
based baselines. Figure 3 reports results across three standard met-
rics: root mean square error (RMSE), mean absolute error (MAE),
and the coefficient of determination (𝑅2). For baselines, we use
two representative pretrained image encoders: ResNet50, a widely
adopted convolutional architecture, and ViT-Base (ViT-B/16), specif-
ically the vit_base_patch16_224 variant that segments each im-
age into 16×16 patches and processes themwith transformer blocks.
These models are fine-tuned to predict crash rates directly from
raw SVIs. We compare these against two variants of our framework
that rely on interpretable embeddings constructed from MLLM re-
sponses: one using linear regression (LR) and another using Light-
GBM (LGBM) as the downstream predictor. Across all metrics, our
method consistently outperforms the deep learning baselines while
maintaining transparency and semantic interpretability. The Light-
GBM variant achieves the strongest overall results. These results
demonstrate that the embeddings retain sufficient information to
make accurate predictions while also enabling interpretability.

To visualize the spatial quality of our predictions, Figure 4 presents
the predicted and actual crash rates across Manhattan at the road
segment level. The predicted map closely mirrors the true spatial
distribution of risk, capturing key hotspots such as lower Manhat-
tan and the Midtown corridor. To ensure comprehensive spatial
coverage and generalizability, predictions are generated using a
five-fold cross-validation setup, where each segment is held out
once as test data. The aggregated predictions thus represent out-of-
sample estimates across the entire study area. This spatial fidelity
highlights the reliability of our interpretable model for real-world
urban safety applications.

4.3 Discovered Factors

A central goal of UrbanX is not just to predict societal outcomes,
but to enable interpretable, data-driven discovery of unstructured
or previously overlooked urban factors. To assess whether our

ActualPredicted

Figure 4: Spatial distribution of predicted (left) vs. actual

(right) crash rates (log) across Manhattan road segments.

framework successfully identifies meaningful visual variables, we
examine the learned regression model using SHAP (SHapley Addi-
tive exPlanations) [26] analysis, which quantifies each variable’s
marginal contribution to the prediction.

Figure 5 presents a top-20 ranked summary of both traditional
(existing) built environment variables and the automatically discov-
ered hypotheses. Remarkably, a majority of the top-ranked variables
by explanatory power are generated by our LLM-based hypothesis
pipeline. This highlights UrbanX ’s capacity to uncover impact-
ful, interpretable factors that are not present in standard urban
datasets, supporting its role as a scientific discovery tool rather
than a black-box predictor.

Many of the discovered hypotheses align with well-established
urban safety principles, validating the model’s ability to recover
known but unstated domain knowledge. For example, Hypo_11 (“Is
there a median strip separating opposing traffic?”) and Hypo_0 (“Is
the road surface marked with visible lane lines?”) are both highly
ranked and show negative SHAP contributions when absent, sug-
gesting their presence is associated with lower crash risk. These
align with conventional traffic engineering wisdom on lane separa-
tion and visual guidance.

At the same time, UrbanX also surfaces more nuanced or less
commonly considered factors. Several high-ranking hypotheses re-
late to pedestrian visibility and activity, such as Hypo_1 (pedestrian
crossing), Hypo_41 (pedestrian presence), and Hypo_35 (pedestrian
signals). These factors may have complex and context-sensitive
relationships with safety outcomes, underscoring the value of se-
mantically grounded, hypothesis-level variables. In addition, Ur-
banX identifies less conventional features that might escape man-
ual enumeration. For instance, Hypo_16 (“Are there any advertise-
ments or billboards?”) and Hypo_6 (“Are there barriers or guardrails
present?”) point to visual distractions and physical protection mea-
sures that may subtly influence crash risk. These hypotheses extend
the scope of interpretable modeling into environmental and percep-
tual dimensions that are often hard to encode using conventional
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Hypo_11: Is there a median strip separating opposing traffic? 
0: Yes, 1: No

Hypo_0: Is the road surface marked with visible lane lines? 
0: Yes, 1: No

Hypo_17: Are there any tunnels visible? 
0: Yes, 1: No

Hypo_41: Are there visible signs of pedestrian activity 
(people walking, crossing)?
0: No, 1: Yes

Hypo_1: Is there a pedestrian crossing visible? 
0: Yes, 1: No

Hypo_28: Is there a high traffic density visible?
0: No, 1: Yes

Hypo_16: Are there any visible advertisements or billboards? 
0: Yes, 1: No

Hypo_6: Are there barriers or guardrails present? 
0: Yes, 1: No

Hypo_24: Is there a visible multi-lane configuration on the road? 
0: No, 1: Yes

Hypo_12: Are there any bridges visible on the road? 
0: Yes, 1: No

Hypo_35: Are there visible pedestrian signals at crosswalks? 
0: No, 1: Yes

Hypo_21: Are there visible barriers separating traffic directions? 
0: No, 1: Yes

Figure 5: SHAP summary plot of the regression model with

both traditional built environment variables and discovered

hypotheses. The right panel maps the top hypothesis vari-

ables to their natural-language question meanings.

GIS-based variables. Compared to traditional indicators such as
street width or proximity to facilities, our hypotheses are more
granular, semantically aligned, and directly grounded in what is
observable in urban space. This illustrates the unique advantage
of UrbanX in supporting structured discovery over unstructured
inputs. A detailed list of all identified hypotheses and their corre-
sponding analyses is provided in Appendix C.

Taken together, these results show that UrbanX is capable not
only of achieving competitive predictive accuracy but also of sur-
facing novel, interpretable factors that enrich the scientific under-
standing of urban safety. Its ability to propose, test, and validate hy-
potheses from raw street imagery that without manual annotation
or expert-defined features, highlighting the potential of MLLM-
powered frameworks to transform how we conduct research in
urban and transportation science. The results reveal that many of
the top-ranked variables in terms of predictive contribution come
from LLM-generated hypotheses, underscoring the framework’s
ability to discover meaningful and interpretable features beyond
standard urban design indicators.

4.4 Variable Significance and Independence

To verify that the hypotheses uncovered by UrbanX are not only
predictive but also statistically robust and non-redundant, we per-
form two complementary analyses: significance versus contribution,
and pairwise correlation, as shown in Figure 6.

The left panel plots each hypothesis by its average SHAP value
(x-axis) and the negative base-10 logarithm of its 𝑝-value from linear
regression (y-axis). This joint visualization enables simultaneous
assessment of feature importance and statistical significance. Hy-
potheses located in the upper-left region of the plot are both highly
predictive and statistically significant. Notably, Hypo_11, Hypo_41,
and Hypo_0 stand out as dominant factors, exhibiting both high
SHAP contributions and extremely low 𝑝-values. These questions
correspond to well-established road safety indicators, whether there
is a median strip separating traffic, whether visible pedestrian activ-
ity is present, and whether lane markings are detectable, offering
domain-consistent evidence for their relevance.

Figure 6: (Left) Each hypothesis is plotted by its average SHAP

value and − log10 (𝑝-value) from regression. Variables in the

top left are highly significant and predictive. (Right) Pearson

correlation matrix between hypotheses, showing low pair-

wise correlation and structural independence.

The right panel presents the pairwise Pearson correlation matrix
among all hypothesis-derived variables, based on their categorical
values across SVIs. The mostly light-toned off-diagonal entries re-
flect generally low correlations, indicating that the learned variables
capture complementary aspects of the visual environment rather
than redundant or collinear signals. This structural independence
further supports the interpretability and modularity of the learned
embedding space, reducing concerns about multicollinearity or
semantic overlap.

Together, these findings demonstrate that UrbanX is capable of
discovering statistically grounded, interpretable, and non-redundant
variables that not only improve predictive performance but also
advance scientific understanding of urban safety phenomena.

4.5 Robustness and Validity

We assess the robustness of UrbanX by varying three key factors:
(1) the capacity of the language model (LLM) used for hypothesis
generation, (2) the capacity of the vision-language model (MLLM)
used for embedding construction, and (3) the number of hypotheses
used to generate interpretable features. Figure 7 presents results
that illustrate how each of these choices affects convergence speed,
predictive accuracy, and model stability.

Effect of model capacity. The left panel compares the conver-
gence of test performance over 50 training epochs using differ-
ent combinations of LLMs and MLLMs. Specifically, we consider
GPT-4o and GPT-4o-mini as the hypothesis generators, paired with
InternVL2.5 models of 8B and 78B parameters for embedding con-
struction. Larger MLLMs (78B) consistently yield better predictive
performance and faster convergence, underscoring the critical role
of visual reasoning capacity in answering hypothesis queries from
SVIs. For example, with InternVL2.5-78B, models converge in fewer
than 10 epochs, while smaller models (8B) exhibit slower and nois-
ier learning curves. Language model size also affects convergence,
though to a lesser extent. GPT-4o achieves faster improvements
than GPT-4o-mini, but both converge to similar final performance.
This suggests that for categorical hypothesis generation, smaller
LLMs are sufficient, though larger models may enhance efficiency
by producing more immediately useful hypotheses.
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Figure 7: Robustness analysis. (Left) Convergence of test met-

rics across different LLM and MLLM configurations. High-

capacity MLLMs (78B) yield better and faster convergence.

(Right) Performance as a function of the number of hypothe-

ses used. Optimal performance is observed at 50 hypotheses.

Effect of hypothesis-set size. The right panel examines perfor-
mance as a function of the number of hypotheses used to construct
interpretable embeddings. Performance improves steadily up to
around 50 hypotheses, with diminishing returns and slight degra-
dation beyond that point. This pattern reflects a balance between
semantic expressiveness and statistical noise: too few hypotheses
limit the model’s representational capacity, while too many may
introduce redundancy, spurious correlations, or overfitting. The
model achieves optimal RMSE, MAE, and 𝑅2 values when embed-
ding dimensionality is neither overly constrained nor saturated.

Implications for practice. These experiments demonstrate that
UrbanX is robust to reasonable changes in foundation-model capac-
ity and to the choice of hypothesis-set size. In resource-constrained
settings, an issue frequently faced by transportation agencies, one
can adopt a smaller language model without a large performance
penalty, provided that a sufficiently capable vision–language model
is available. The sensitivity analysis on hypothesis cardinality also
offers guidance for practitioners: start with a moderate set (40–60
items), monitor statistical significance during training, and prune
or augment as needed. The results confirm that the proposed frame-
work delivers stable, interpretable, and policy-relevant insights
across a range of computational budgets and modelling choices.

4.6 Discussion

UrbanX demonstrates the potential of applying large language
MLLMs for interpretable, automated hypothesis discovery in the
context of urban safety analysis. The results show that the gener-
ated hypotheses not only match or surpass the predictive power of
traditional computer vision models but also provide clear semantic
insights aligned with established urban design principles. Moreover,
UrbanX enables the discovery of novel, human-interpretable vari-
ables that may have been overlooked in prior literature, offering a
scalable approach to data-driven scientific discovery.

This work implicitly builds upon a set of assumptions that re-
flect a shift in how machine learning can be used for knowledge
generation. First, we assume that MLLMs, when queried appro-
priately, can reliably interpret and respond to natural-language
hypotheses about complex visual scenes. This assumption effec-
tively treats the MLLM as a proxy for human visual judgment,

capable of semantically parsing urban environments in a consistent
and informative way. A detailed analysis of MLLM answer quality
is provided in Appendix D. Second, we assume that LLMs possess
a rational understanding of societal constructs such as safety, risk,
and infrastructure, and can leverage this latent knowledge to pro-
pose plausible hypotheses. These assumptions align with a broader
philosophical view of foundation models not merely as function ap-
proximators, but as cognitive instruments, tools that can externalize
latent human reasoning in scalable and programmable ways.

From this perspective, our framework is more than a predictive
pipeline, it is a machine-in-the-loop system for structured discovery.
It operationalizes a new epistemic loop: language models propose
interpretable, theory-aligned variables; MLLMs extract structured
representations from raw perceptual data; and statistical models
evaluate and refine the space of explanatory factors. While not
infallible, this loop offers a novel approach to bridging data, seman-
tics, and scientific reasoning. Another key implication of this work
is that hypothesis generation and refinement, traditionally limited
by expert intuition and manual feature engineering, can be guided
by LLMs in a statistically grounded loop. This offers a path toward
semi-automated scientific workflows where human and machine
jointly explore high-dimensional, unstructured data spaces.

Notably, our reliance on foundation models introduces limita-
tions. The correctness of our results depends on the alignment and
reliability of the underlying MLLMs and LLMs. Errors in visual
understanding or gaps in commonsense reasoning may lead to spu-
rious or irrelevant hypotheses. Moreover, the iterative nature of our
approach, while principled, incurs significant computational over-
head due to repeated prompting and inference. However, we believe
these constraints are temporary. As foundation models continue to
improve in efficiency, alignment, and accessibility, the feasibility of
such machine-guided discovery frameworks will continue to grow.

5 CONCLUSION

In this paper, we presented UrbanX, a framework that combines
MLLMs with interpretable statistical modeling to automate scien-
tific discovery from urban data. Taking road safety in theManhattan
area as a case study, UrbanX formulates natural-language hypothe-
ses, extracts semantically meaningful embeddings through visual
question answering, and evaluates their significance using trans-
parent regression models. Our experiments show that UrbanX
outperforms conventional deep learning approaches while uncover-
ing novel, interpretable variables aligned with domain knowledge.

This work demonstrates a new paradigm for scientific discov-
ery in urban research, one that integrates perception, language,
and statistical reasoning in a unified pipeline. The generality of
UrbanX enables broad applicability to other domains such as walk-
ability, equity, and environmental quality, where unstructured data
possesses rich information and model interpretability are central.
Future work may extend this approach to dynamic data, integrate
causal inference, and benefit from ongoing advances in the align-
ment and efficiency of foundation models. By rethinking machine
learning as a tool for interpretable, data-driven reasoning, UrbanX
offers a scalable foundation for MLLM hypothesis-driven urban
science and beyond.
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A PROMPT DESIGN AND SAMPLING STRATEGY

A.1 Hypothesis Prompting Strategy.

In our implementation, we adopt an exploration-exploitation strategy for generating new hypotheses using Large Language Models. At each
iteration 𝑡 , a new set of candidate hypothesesH𝑡 is sampled by prompting the LLM with one of two designed templates:

HYPO_EXPLOIT_PROMPT

Generate a new set of {n} diverse and non-overlapping binary classification questions that capture interpretable features from street view images relevant to

predicting crash rates.

Existing questions: ```{hypo t-1}```

Design requirements:
- Avoid redundancy and ensure each question is unique.
- Prioritize features with clear relevance to road safety.
- Questions must be answerable based solely on the visual content of the street view image.
- Each question must have exactly two answer choices.
- The answer options must be mutually exclusive and collectively exhaustive.
- Avoid vague, ambiguous, or overly subjective formulations.
- Focus on concrete visual cues (e.g., road structure, visibility, signage, obstructions) that could improve crash prediction.

First, provide a short reasoning paragraph analyzing the strengths and weaknesses of the existing questions with respect to safety prediction. Suggest new

aspects that could be captured to improve performance.

Then return a valid Python dictionary formatted as JSON:
{{

"reasoning": "short reasoning text.",
"Question 1": {{"0": "Answer option A", "1": "Answer option B"}},
...

}}

The response must be valid JSON (parseable by `json.loads`) and should include only the JSON dictionary, without additional commentary.

An exploitation prompt (see HYPO_EXPLOIT_PROMPT) that conditions on the currently retained hypothesis setH𝑡−1 and their statistical
significance P𝑡−1. This prompt encourages refinement and expansion of hypotheses with known predictive value, anchoring the generation
process to empirically validated ideas.

HYPO_EXPLORE_PROMPT

Generate {n} unique binary classification questions that explore the broad visual, social, and contextual dimensions of street view imagery.

Design requirements:
- Avoid repetition and ensure semantic diversity.
- Questions must be clearly answerable from a single street view image.
- Each question must have exactly two answer choices.
- The answer options must be mutually exclusive and collectively exhaustive.
- Avoid overly ambiguous, speculative, or subjective content.

Consider features beyond the obvious, such as socioeconomic signals, environmental quality, cultural context, artistic elements, or neighborhood character. Let

curiosity guide you to ask unconventional, thought-provoking questions that reveal hidden or surprising correlations.

Return a valid Python dictionary formatted as JSON:
{{

"reasoning": "brief explanation of how the questions were conceived.",
"Question 1": {{"0": "Answer option A", "1": "Answer option B"}},
...

}}

The response must be valid JSON (parseable by `json.loads`) and should include only the JSON dictionary, without additional commentary.

An exploration prompt (see HYPO_EXPLORE_PROMPT) that deliberately encourages broader semantic coverage, open-ended question
generation, and inclusion of unconventional or underexplored visual features. This promotes diversity and mitigates local optima.

To balance these goals, we apply a stochastic control mechanism: at each iteration, with a fixed probability 𝑝explore (default 0.1), the
exploration prompt is selected; otherwise, the exploitation prompt is used. This simple sampling scheme mirrors common strategies in
reinforcement learning and approximate inference, ensuring both local exploitation and global search over the hypothesis space.

The final prompt used in each iteration is automatically constructed based on the current retained hypotheses and plugged into the
appropriate template. Each LLM response is parsed as structured JSON and incorporated into the next round of variable construction and
statistical evaluation.

This approach enables interpretable and data-driven exploration of the hypothesis space while maintaining relevance and control through
prior feedback and statistical validation.
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A.2 Embedding Prompting Strategy

For embedding construction, we use Multimodal Large Language Models (MLLMs) to answer each generated hypothesis based on the visual
content of a street view image. We define two templates for prompting the MLLM: a single-question version for sequential evaluation, and a
batched version for more efficient parallel processing.

EMB_PROMPT

Based on the street view image of a road, answer the following question:
```{hypo t}```

Return only an integer indicating the option number and nothing else

The single-question prompt (EMB_PROMPT) is used to infer the answer to one hypothesis at a time. It specifies the question and options,
instructing the MLLM to return only the index of the chosen option as an integer.

EMB_BATCH_PROMPT

Based on the street view image of a road, answer the following questions:
```{hypo t}```

example response format (should be replaced by your answer to the questions):
["0", "1", ...]

Return only a list of {n} integers indicating the option numbers, the response should be parsable with `json.loads` and nothing else

The batch prompt (EMB_BATCH_PROMPT) enables simultaneous evaluation of multiple hypotheses. It presents all questions at once
and expects a list of integers corresponding to the chosen answer for each. Unless otherwise specified, we use the batch prompt for all
experiments, as we find that it does not compromise VQA quality. This structured prompting strategy ensures semantic traceability, data
efficiency, and ease of downstream statistical modeling.
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B SUMMARY OF BUILT ENVIRONMENT VARIABLES

This section summarizes the 58 built environment variables used in the study. These variables are derived from multiple data sources,
including Google Street View images, New York City open data, land use polygons, OpenStreetMap, and POI (Point of Interest) datasets. The
variables are categorized into five main classes: View Indices, Road Attributes, Land Use, Points of Interest (POI), and Traffic-related Facilities.

Table 1: Summary of Built Environment Variables

Category Variables Description

View Indices (12) road_view_index, pavement_view_index,
sky_view_index, building_view_index,
tree_view_index, grass_view_index,
fence_view_index, wall_view_index,
traffic_lights_area_view_index,
stop_signs_area_view_index,
traffic_lights_number_view_index,
stop_signs_number_view_index

Proportion of image pixels repre-
senting each element (e.g., sky, pave-
ment, building, vegetation, traffic
signs), extracted from Google Street
View images.

Road Attributes (2) Highway_or_not, st_width Binary indicator of whether the
road is a highway, and the width
of the road in meters.

Land Use (7) Residential_land, Commercial_land,
Industrial_land, Transportation_land,
Public_land, Open_space, Land_use_mixture

Area of six land use types within a
buffer around the road segment, and
a land use mixture index capturing
the diversity of land use types.

POI (27) number_500_Residential,
number_500_Education_Facility,
number_500_Cultural_Facility,
number_500_Recreational_Facility,
number_500_Social_Services,
number_500_Transportation_Facility,
number_500_Commercial,
number_500_Government_Facility,
number_500_Religious_Institution,
number_500_Health_Services,
number_500_Public_Safety,
number_500_Water, number_500_Miscellaneous,
distance_Residential, distance_Education_Facility,
distance_Cultural_Facility,
distance_Recreational_Facility,
distance_Social_Services,
distance_Transportation_Facility,
distance_Commercial, distance_Government_Facility,
distance_Religious_Institution,
distance_Health_Services, distance_Public_Safety,
distance_Water, distance_Miscellaneous, POI_type

Number of POIs of 13 types within
a 500-meter buffer, distances to the
nearest POI of each type, and the
primary POI type.

Traffic-related Facilities (10) number_500_transport_bus_stop,
number_500_traffic_stop, number_500_traffic_crossing,
number_500_traffic_motorway_junction,
number_500_traffic_traffic_signals,
distance_transport_bus_stop, distance_traffic_stop,
distance_traffic_crossing,
distance_traffic_motorway_junction,
distance_traffic_traffic_signals

Number and distance of various
traffic-related facilities (e.g., bus
stops, crossings, traffic lights, junc-
tions) within 500 meters of the road
segment.
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Hypo_0: Is the road surface marked with visible lane lines? 0: Yes, 1: No

Hypo_1: Is there a pedestrian crossing visible? 0: Yes, 1: No

Hypo_2: Are there any parked vehicles on the road? 0: Yes, 1: No

Hypo_3: Are there any trees or shrubs nearby that might obstruct visibility? 0: Yes, 1: No

Hypo_4: Is there a sidewalk present for pedestrians? 0: Yes, 1: No

Hypo_5: Is there signage indicating a school zone? 0: Yes, 1: No

Hypo_6: Are there barriers or guardrails present? 0: Yes, 1: No

Hypo_7: Is there a bus stop visible? 0: Yes, 1: No

Hypo_8: Are there any cyclists visible on the road? 0: Yes, 1: No

Hypo_9: Are there any pedestrian overpasses or underpasses? 0: Yes, 1: No

Hypo_10: Is the area heavily urbanized? 0: Yes, 1: No

Hypo_11: Is there a median strip separating opposing traffic? 0: Yes, 1: No

Hypo_12: Are there any bridges visible on the road? 0: Yes, 1: No

Hypo_13: Is there a visible incline or decline on the road? 0: Yes, 1: No

Hypo_14: Are there pedestrian barriers on the sidewalk? 0: Yes, 1: No

Hypo_15: Are there any visible traffic cones? 0: Yes, 1: No

Hypo_16: Are there any visible advertisements or billboards? 0: Yes, 1: No

Hypo_17: Are there any tunnels visible? 0: Yes, 1: No

Hypo_18: Is there any snow or ice visible on the road? 0: Yes, 1: No

Hypo_19: Is there a visible emergency vehicle access? 0: Yes, 1: No

Hypo_20: Is the road multi-lane or single-lane? 0: Multi-lane, 1: Single-lane

Hypo_21: Are there visible barriers separating traffic directions? 0: No, 1: Yes

Hypo_22: Is there any visible construction work on the road or sidewalk? 0: No, 1: Yes

Hypo_23: Is there any visible obstruction affecting driver visibility? 0: No, 1: Yes

Hypo_24: Is there a visible multi-lane configuration on the road? 0: No, 1: Yes

Hypo_25: Is there a merging lane visible? 0: No, 1: Yes

Hypo_26: Is there a visible school bus stop? 0: No, 1: Yes

Hypo_27: What is the width of the road? 0: Narrow, 1: Wide

Hypo_28: Is there a high traffic density visible? 0: No, 1: Yes

Hypo_29: Is there a visible pedestrian refuge island? 0: No, 1: Yes

Hypo_30: Is there visible road debris that could impact vehicle control? 0: No debris visible, 1: Debris visible

Hypo_31: Are there any temporary traffic signs indicating detours or lane closures? 0: No temporary signs visible, 1: Temporary signs visible

Hypo_32: Are there any visible electronic billboards that might distract drivers? 0: No electronic billboards, 1: Electronic billboards visible

Hypo_33: Is the road surface visibly wet or dry? 0: Dry, 1: Wet

Hypo_34: Are there any visible surveillance cameras along the road? 0: No, 1: Yes

Hypo_35: Are there visible pedestrian signals at crosswalks? 0: No, 1: Yes

Hypo_36: Are any road intersections controlled with roundabouts? 0: No, 1: Yes

Hypo_37: Is there visible vegetation that could obscure road signs? 0: No, 1: Yes

Hypo_38: Is there a visible presence of dedicated turning lanes? 0: No, 1: Yes

Hypo_39: Are there visible speed bumps or traffic calming measures? 0: No, 1: Yes

Hypo_40: Is there a visible traffic signal at intersections? 0: No, 1: Yes

Hypo_41: Are there visible signs of pedestrian activity (people walking, crossing)? 0: No, 1: Yes

Hypo_42: Are there visible temporary barriers or detours? 0: No, 1: Yes

Hypo_43: Are there any visible sharp curves or winding sections on the road? 0: Yes, 1: No

Hypo_44: Are there visible reflective road markers for improved night visibility? 0: No, 1: Yes

Hypo_45: Is there visible debris or obstacles on the road that could affect driving? 0: No visible debris or obstacles, 1: Visible debris or obstacles

Hypo_46: Are there any visible signs indicating upcoming sharp turns or curves? 0: No visible signs, 1: Visible signs for sharp turns

Hypo_47: Is there visible evidence of recent road maintenance or repairs? 0: No evidence of recent maintenance, 1: Visible signs of maintenance or repairs

Hypo_48: Are there any visible speed enforcement measures, such as cameras or speed limiters? 0: No visible speed enforcement measures, 1: Visible speed 
enforcement measures

Hypo_49: Is there visible pedestrian activity crossing the street at non-designated areas? 0: No pedestrian activity at non-designated areas, 1: Pedestrian activity 
at non-designated areas

Figure 8: Final set of 50 natural-language hypotheses retained by UrbanX after the iterative process.
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C QUALITATIVE ANALYSIS OF THE FINAL HYPOTHESIS SET

The final iteration of UrbanX retains 50 hypotheses that together provide a multifaceted description of the street environment, the resulting
hypotheses are shown in Figure 8. A close reading of the list reveals several encouraging patterns as well as a few limitations that suggest
directions for future refinement.

Breadth of physical design cues. A substantial portion of the questions targets canonical elements of roadway geometry: median strips,
lane markings, multi-lane configurations, and road width. These queries parallel variables that civil engineers traditionally collect through
manual audits, yet here they arise automatically from the LLM without prior codification. Their presence confirms that the system can
rediscover core safety factors in a purely data-driven manner.

Attention to vulnerable users. Another cluster of hypotheses concentrates on pedestrian infrastructure and activity, including crossings,
signals, overpasses, and informal crossing behaviour. The model further probes cyclist visibility and the existence of school-zone signage. By
elevating these human-centric factors to high SHAP ranks, the framework highlights elements often under-represented in purely geometric
crash models, reinforcing its potential for policy-relevant discovery.

Contextual and perceptual variables. Several questions extend beyond traditional inventories to capture visual distraction (billboards,
electronic signage), driver visibility (obstructions, vegetation), and transient obstacles (construction work, debris, snow or ice). Such perceptual
cues are rarely present in structured GIS layers yet can be critical for real-world safety. Their emergence illustrates how image-based
hypothesis generation can broaden the discourse on urban risk.

Redundancy and granularity considerations. A few hypotheses partly overlap in meaning. For instance, both the multi-lane question
and the lane-width question address capacity, and both barrier-related items refer to physical separation. While some redundancy is expected
in an open-ended search, it suggests an opportunity to introduce a post-generation clustering step that merges semantically similar queries
and thereby yields a more parsimonious variable set.

Ambiguity and data-imbalance. Certain questions may be ambiguous in practice or rarely triggered in the Manhattan data. Examples
include snow or ice on the roadway and visible emergency vehicle access, which occur infrequently in the imagery and hence contribute
little statistical signal. Future iterations might incorporate an adaptive pruning rule that removes hypotheses with low prevalence or high
annotation uncertainty.

Categorical framing limitations. All queries are currently coded as questions with categorical answers. While this choice simplifies
MLLM inference and statistical testing, it can obscure gradations of exposure. Road width, traffic density, and billboard prominence are
inherently continuous or ordinal. Extending UrbanX to multi-class or scalar responses would permit richer descriptions while retaining
interpretability.

Implications for urban research. Taken together, the hypothesis set demonstrates that UrbanX can surface both established and novel
factors spanning geometry, infrastructure, human activity, and perceptual context. Even with the noted redundancies and simplifications, the
variables provide a transparent basis for scientific inquiry, enabling planners to trace crash-risk patterns back to concrete visual attributes.
As MLLMs continue to improve, we anticipate the framework will yield even finer-grained hypotheses, opening new avenues for theory
building in urban safety and beyond.
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D QUALITATIVE VERIFICATION OF MLLM ANSWERS

Figure 9: Panoramic SVI used for VQA analysis.

To evaluate the reliability of MLLM-derived answers in our framework, we conducted a manual audit on a representative panoramic SVI
(Figure 9) using the final hypothesis set (see Figure 8). Each answer was cross-checked by an expert in transportation systems and labeled as
correct, partially correct, or incorrect. The results are summarized in Table 2, with detailed error analysis provided in Table 3.

Table 2: Manual audit of MLLM answers for the 50 retained hypotheses.

Outcome # Hypotheses Examples Typical cause

Correct 42 lane lines, crosswalk, bus stop, median strip clear visual cue
Partially correct 3 vegetation obstruction, traffic density ambiguous threshold
Incorrect 5 snow/ice, pedestrian signal, speed camera rare or small object

Overall accuracy. As shown in Table 2, 42 of the 50 MLLM answers (84%) were fully correct. Three were partially correct and five were
judged incorrect. Correct predictions typically involved clear, high-contrast visual elements such as lane markings, sidewalks, crosswalks,
parked vehicles, and urban density, consistent with the top contributors identified by SHAP analysis in Section 4.3.

Error profile. A breakdown of the eight non-correct answers is shown in Table 3. Errors generally fall into three categories:
• Ambiguous semantics. Hypotheses involving subjective thresholds (e.g., visibility obstructions or what counts as an “advertisement”)
yielded borderline results due to interpretive ambiguity in both human and model judgment.
• Rare or subtle visual cues. Conditions such as snow, temporary detours, and speed cameras were either absent or too small to detect
reliably at the given image resolution, resulting in hallucinated or missed detections.
• Fine-grained infrastructure. Elements like pedestrian refuge islands or painted turning lanes were sometimes misidentified, likely due
to resolution constraints in the panoramic image.

Key insight: resolution is a limiting factor. Many of the observed errors, especially those involving subtle signage, infrastructure details, or
rare objects, can be traced directly to insufficient resolution in the source image. While panoramic images provide comprehensive spatial
coverage, they often downsample visual detail, making it hard for even a capable MLLM to reliably detect small features such as traffic cones,
refuge islands, or painted turn arrows. Switching to higher-resolution imagery, zoomed crops, or targeted visual attention modules could
address most of these failures with minimal design change.

Impact on model integrity. Importantly, none of the outright failures involved the high-salience geometric or pedestrian-safety hypotheses
that dominate model attribution and prediction. This helps explain why UrbanX retains high predictive accuracy despite modest error rates
in the long tail of hypotheses. The most informative variables are generally those with clear, resolvable visual signals, precisely the ones the
MLLM gets right most often.
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Table 3: Detailed audit of hypotheses flagged as partially correct or incorrect for the case study in Figure 9.

Hypothesis (paraphrased) Model Answer Reason for Deviation

Partially correct

Are there trees or shrubs that might obstruct visibil-
ity?

Yes Small street trees are present, but they do not noticeably block sight
lines; the “obstruction” qualifier is subjective.

Are any advertisements or billboards visible? Yes A store fascia (Hallmark) is present, yet it is a storefront sign rather
than a driver-facing billboard, making the classification debatable.

Are reflective road markers visible? Yes Lane arrows could contain reflective paint, but this cannot be verified
from the daytime image; confidence is therefore partial.

Incorrect

Is there visible construction work on the road or
sidewalk?

Yes No construction activity or equipment is present in the scene.

Is there a pedestrian refuge island? Yes The intersection lacks any raised or painted refuge island.
Are pedestrian signals present at the crosswalk? No Standard pedestrian countdown signals are visible on the far-left mast

arm.
Is there a dedicated turning lane? No Painted turn arrows are clearly marked in the foreground lane.
Are temporary barriers or detours visible? Yes No cones, barriers, or road-closure signs can be observed.

Practical refinement strategies. To further improve reliability without sacrificing transparency, several targeted interventions can be
introduced:
• Prompt rephrasing. Adding clarifying definitions or thresholds (e.g., “construction work must include cones or equipment”) could help
disambiguate borderline cases.
• View augmentation. Supplementing wide-angle views with higher-resolution zoom-ins or directional crops would boost recognition of
small but critical features.
• Response calibration. Incorporating uncertainty scores or allowing abstention on low-confidence answers could help filter out halluci-
nated positives.

Conclusion. This case study confirms that MLLMs can reliably answer structured hypotheses about urban form in most settings, especially
when the cues are large, unambiguous, and visually distinct. Remaining errors are interpretable, largely due to either visual resolution or
semantic vagueness, and can be systematically mitigated. These findings strengthen confidence in UrbanX ’s use of MLLM responses as
interpretable, robust inputs for scientific analysis.
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