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Abstract
Modern urban spaces are equipped with a increasingly diverse set
of sensors, all producing an abundance of multimodal data. Such
multimodal data can be used to identify and reason about important
incidents occurring in urban landscapes, such as major emergencies,
cultural and social events, as well as natural disasters. However,
such data may be fragmented over several sources and difficult to
integrate due to the reliance on human-driven reasoning for iden-
tifying relationships between the multimodal data corresponding
to an incident, as well as understanding the different components
which define an incident. Such relationships and components are
critical to identifying the causes of such incidents, as well as produc-
ing forecasting the scale and intensity of future incidents as they
begin to develop. In this work, we create SIGMUS, a system for
Semantic Integration for Knowledge Graphs in Multimodal Urban
Spaces. SIGMUS uses Large Language Models (LLMs) to produce
the necessary world knowledge for identifying relationships be-
tween incidents occurring in urban spaces and data from different
modalities, allowing us to organize evidence and observations rele-
vant to an incident without relying and human-encoded rules for
relating multimodal sensory data with incidents. This organized
knowledge is represented as a knowledge graph, organizing inci-
dents, observations, and much more. We find that our system is
able to produce reasonable connections between 5 different data
sources (new article text, CCTV images, air quality, weather, and
traffic measurements) and relevant incidents occurring at the same
time and location.

CCS Concepts
• Information systems→ Spatial-temporal systems; •Computing
methodologies → Spatial and physical reasoning; Ontology
engineering.

Keywords
Urban Computing, Large Language Model, Knowledge Graphs,
Multimodal Learning

1 Introduction
The proliferation of digital sensors embedded in modern urban in-
frastructure, coupled with increasingly efficient and robust connec-
tivity technologies has introduced a growing ecosystem of publicly
accessible data streams - from traffic cameras to weather stations,
environmental monitors, and real-time news feeds. This ecosystem
is further augmented both by human observations made through
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Figure 1: High level overview of SIGMUS, which aims to
identify incidents in urban spaces and draw connections to
sensory data collected in those spaces.

community-contributed information on social platforms as well as
crowd-sourced environmental monitoring through mobile devices.
However, despite the abundance of such rich multimodal data in
urban spaces, these data streams often reside in fragmented, siloed
systems that lack mechanisms for integrated analysis and reasoning
across data streams. As a result, this ecosystem remains heavily
underutilized and lacks tools for understanding and monitoring
major phenomena that require analysis across various sources and
modalities.

One example of such major phenomena was the catastrophic
Palisades Fire (and other concurrent wildfires), which devastated
parts of Los Angeles in January 2025. Understanding the full impact
of the wildfires requires an analysis across disparate data sources.
CCTV data, air quality measurements, and news reports each pro-
vide a unique and critical insight into how the city may be affected.
Such insight is valuable to emergency service providers, policy-
makers, health agencies, and future urban planners. However, this
full potential can only be achieved when information across data
sources is unified and organized in a human-readable manner.

By unifying disparate data sources, we enable urban knowledge
systems to fuse independent reports across different modalities into
cohesive, contextualized incidents that can be readily visualized.
This allows for retroactive analysis of important city events. Fur-
thermore, asmany of these data sources publish live data, it becomes
possible to create a live knowledge system suited for monitoring
and early detection of incidents occurring in urban environments.

Ideally, a live knowledge system for analysis and monitoring of
urban environments should describe relationships between data
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from heterogeneous sources. Different sources may report data
which is related by time, space, as well as the incident itself. Thus, to
overcome the fragmented nature of many data sources, we propose
using a knowledge graph to unify and integrate data.

However, many of these relationships within and between data
sources may be challenging to infer, as they may be conditioned on
the context of the data as well as some degree of world knowledge.
For example, identifying that an air quality trend is related to the
report of a house fire depends on both the context (e.g. time and
space), but also the physics of the world (e.g. a fire should reduce air
quality). Importantly, such inferences require bothworld knowledge
and a degree of fuzzy reasoning.

Recently, Large Language Models (LLMs) have been shown
to demonstrate significant world knowledge about sensory data
[45, 47]. We hypothesize that LLMs, when used to reason about
incidents and sensory data, provide valuable insights into the emer-
gence of real-world incidents and their detection through sensory
data. Importantly, the ability to generate meaningful relationships
between incidents and different sensory sources (e.g. CCTV, traffic
measurements, news articles) requires a significant degree of world
knowledge. In this work, we show the effectiveness of LLMs at the
qualitative reasoning required to organize and create relationships
between incidents and sensory data.

The main contribution of this work, SIGMUS, is a system for
ingesting data from a variety of data sources (across text, image and
tabular data), and integrating multimodal information with identi-
fied real-world incidents. Figure 1 showcases the main objectives of
our system, allowing for readable information about sensory data
and associated incidents to be stored in a knowledge graph. We
provide representative examples to illustrate SIGMUS’s capacity
to identify incidents from multimodal inputs, organize them into
a hierarchy, and establish semantic connections between sensory
data and incidents using a knowledge graph. We also study the
latency of processing multimodal information and storing it on the
knowledge graph, and discuss the design decisions in our system
leading aiming to lead to more efficient use of LLMs. As a case
study, we examine the 2025 Los Angeles Wildfires and showcase
some of the relationships identified by different incidents and their
associated multimodal information.

2 Related Work
2.1 Multimodal Knowledge Graphs
Existing works on multimodal knowledge graphs typically involve
both semi-structured text and complex unstructured data such as
images. [35] focuses on extracting text, images, and source code
from academic publications and creating their respective graphs.
They apply a separate processing pipeline for each modality and
attempt to align different entities into the Computer Science Ontol-
ogy (CSO) [5]. [43] takes an existing knowledge graph (ConceptNet
[38]) and annotates it with additional attributes for images, sound,
and video. [42] describes an ontology for structuring knowledge
collected by sensors in smart cities. However, it lacks a concrete
implementation and doesn’t collect event information necessary
for smart city applications.

2.2 Multimodal Data Integration
The concept of unifying data sources which are diverse in type
into a coherent view for monitoring or prediction has also been
explored. In the web domain, a sensor web [24] describes an infras-
tructure that enables discovery and integration of sensors and their
data. An example of such a system is Senseweb [31], which is a
web platform that ingests data from different sensory data streams
and arranges them into a map view. Some tools, such as Graph
of Things [36] describe an idea similar to ours, where they aim to
construct a live knowledge graph of various IoT and social media
data, and creating connections between heterogenous data sources
using several ontologies. While these platforms and tools share a
similar goal to ours, they lack the ability to produce inferences and
correlations between information which has historically required
human intervention to directly process such correlations or cre-
ate flexible pipelines to represent such reasoning. It’s also worth
mentioning that while multimodal data fusion also brings together
data from different sources, its objective is often task-specific and
typically doesn’t use human knowledge as explicitly as data inte-
gration might (such as the use of an ontology or linking against
an external knowledge graph). Thus we won’t be including related
work from this field.

2.3 LLMs for Knowledge Graphs
There are variety of works which utilize Large Language Models
(LLMs) in various roles for interacting with knowledge graphs.
LLMs for constructing knowledge graphs

[33] iteratively creates a semantic map of events occurring across
news documents, and uses the LLM to fill out actors, relationships,
and states given the raw text document. [30] attempts to create an
ontology from a document of terms, using some internal knowledge
of the world to decide taxonomic and non-taxonomic relations.
[49] provides knowledge graphs as answers to users questions
by searching for relevant information and organizing it into facts
represented as triples.

LLMs expanding knowledge graphs with new facts and
verifying existing facts

[46] uses an LLM in a Retrieval-Augmented-Generation (RAG)
style to query a knowledge graph and answer a user query. In par-
ticular, it converts a natural language question into the appropriate
query language, and passes the response as part of the context into
the LLM for question answering. [41] uses additional text from
online sources to fill out empty fields in some given knowledge
templates. [48] uses an existing ontology and seeks to extend it
with new relationships between entities given a collection of raw
documents.

[22] uses ground truth documents in order to verify triples found
in knowledge graphs using LLMs. [23] works with several addi-
tional sources of obtaining evidence: web searches, LLM internal
knowledge, and reference knowledge graphs.

LLMs for querying Knowledge Graphs
[27] stores nodes from a knowledge graph as document embed-

dings which are used at query time for RAG. [26] is given a graph
as an input, either as a textual description or an image, along with
a user query. [44] aims to improve Q/A performance by rewriting
extracted triples from a KG into more descriptive, readable text.
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[39] uses both a knowledge graph as well as some degree of the
LLM’s internal reasoning to answer more open ended Q/A ques-
tions. [29, 34, 40? ] allows for querying the knowledge graph by
iteratively traversing the KG. These works treat the LLM as a plan-
ner for obtaining the necessary information to answer a question.

2.4 Ontologies for Multimodal Sensory
Knowledge Graphs

Several ontologies were found to be relevant to our scenarios, and
are particularly useful when discussing Semantic Web related plat-
forms. The Brick schema [11] describes an RDF-written ontology,
designed to represent resources in building management systems.
It includes concepts covering individual sensory devices as well
as locations within buildings, represented by logical relationships.
The Smart Applications Reference Ontology (SAREF) [16] and its
wearable version (SAREF4WEAR) [17] both describe sensor-specific
characteristics, including properties of the device, measurements,
and real world features to be measured. The Sensor, Observation,
Sample, Actuator Ontology (SOSA) [18] provides a similar sensor-
centric view, describing features of interest, properties of sensors,
as well as measurements.

We found that these existing ontologies often lacked certain
features necessary to organize urban sensory data (such as spatial,
temporal, or incident classes). Thus, we did not adopt any existing
ontology as-is. However, we have aligned a significant set of con-
cepts with existing ontology classes and terms, which we describe
later in Section 3 .

While there exists some works on smart city modeling, such as
[19, 21, 28], these works either do not involve the same notion of
events that we wish to model, lack sensor-specificity, or target sim-
pler structured sensor readings and not more complex information
such as actors within news articles.

3 Background
In this section we provide an overview of terminology used in the
SIGMUS system, as well as the ontology underlying the knowledge
graph.

3.1 Terminology
Table 1 describes the different terms we use when organizing data
in urban spaces. The notion of incidents is motivated by the need
for larger occurrences influencing cities or states (such as natural
disasters, major entertainment events, etc) to be represented in our
knowledge graph, allowing us to identify more specific components
contributing to them. Reports are an abstraction where sensory
data (and its associated metadata like time, accuracy, and location),
as well as human-generated knowledge (such as news and tweets)
can be integrated in our knowledge graph. In our system, a report
is an individual news article, image, or sample from a time series.
Observers can be used to identify the entity publishing a particular
report. For sensors, this can be a specific sensor ID, while for human-
generated knowledge this can be an organization name (such as a
news station) or username.Modality represents a specific modality
of a report. This allows us to separate out different types of data
present in a report possessing different properties. For example, a
news report may use images, audio, and text. Images yield a caption

Figure 2: The SIGMUS ontology

property describing the image, audio describes the loudness of a
scene, and text reveals the named actors involved an event. Aggre-
gators are the platforms from which we obtain data from (such
as X.com, Caltrans CCTV, etc), and may vary in how trustworthy
its knowledge is depending on the nature of its observers (though
currently we do not model these attributes). Events allow us to de-
scribe interactions between two parties, such as "accuse of a crime",
or "protest" (where interactions are described under CAMEO code-
book [7]). In our current implementation, events are specific to
news articles, but other modalities may also reveal specific inter-
actions between parties. Actors are the parties involved with an
event, where both individual people and larger organizations of
people may be named as actors.

3.2 The SIGMUS ontology
Having identified the main terms in our system, we now introduce
the relationships between each of the terms, with each term being a
class in our ontology). Figure 2 describes how each class is related,
as well as the main attributes present in for each class.

As our ontology focuses on creating common representations
across different modalities (such as image, text, and tabular data),
we designed classes with properties which can be shared across
those data. In addition, we also introduce new terms which allow
us to represent high impact phenomena that influence cities and
states, while also being able to attach different types of contributing
factors and knowledge associated with such phenomena.

Many of the properties are reused from existing ontologies:
• dcterms: identifier is used as a reference to a particular

resource represented as some unique key or string, taken
from the Dublin Core Terms ontology [8].

• rdfs: label and rdfs: comment are used to describe a human
readable string and a description, respectively. These are
taken from the RDF Schema [14].

• time properties are taken from the OWL Time ontology
[32], allowing us to represent the start and end time of
events.

• sosa and qudt are both part of the Semantic Sensor Network
Ontology [18], which we use to describe the properties and
units of sensorymeasurements. For more complex data (like
images and audio), the Value field is treated as a filepath to
the data rather than directly encoding it in the knowledge
graph instance.

There are also several new fields:
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Term Definition

Incident

An occurrence, natural or manmade, that necessitates a response to protect life or property. The word “incident”
includes planned events as well as emergencies and/or disasters of all kinds and sizes. This definition is taken from
the Federal Emergency Management Agency (FEMA) [10]. In our system, incidents may be linked to
multiple reports, and may occur as part of other incidents.

Report An observation which may be structured or annotated in some way, produced from observers. Annotations
involve labels such as timestamps, locations, or other labels which allow us to link the data to real world entities

Observer An entity, either a sensor or individual that directly perceives, records and/or detects features of the environment.
These organize information into reports which are then collected by Aggregators.

Modality A subset of a report represented by a unique type of data, such as image, audio, or text. A report may have multiple
modalities of information present.

Aggregator
Is an entity that collects information from multiple observers and presents them in the form of reports.
These sources may be sensory or human, and may represent information in multiple modalities, such as textual,
visual, auditory, and tabular.

Data Source We use this term interchangeably with Aggregator, but when discussing our knowledge graph we prefer aggregator as it aligns
better with the rest of our terminology.

Event

Describes interactions between actors, with various terms relating to violent conflict, political actions, or other
types of cooperative behaviors. We use the Conflict and Mediation Event Observations (CAMEO) codebook [7] to describe
our events. Incidents can be viewed as events that become significant in terms of people involved or damage caused,
making them of interest to a city or state.

Actor
A real world entity, person, or organization which has a name. We use the Conflict and Mediation Event Observations
(CAMEO) codebook [7] to describe our actors. However, while CAMEO is typically focused on larger groups
(e.g. political parties, unions, armed groups), we allow for individual people to be identified as actors.

Table 1: List of terms used in our system and their definitions

• The sigmus: Inference class introduces the inferenceType
property, which describes the algorithm or ML task that
was used to process the data (such as "Trend Analysis",
"Image Captioning"). The result of this processing is stored
in the inferenceResult field as a human-readable string.

• The sigmus: cameoEvent property represents the codes from
CAMEO [7] that can be mapped to specific event terms
and descriptions (e.g. assassinations) or actors (e.g. govern-
ment).

4 Methods
4.1 Data sources and Ingestion
For our choices of data sources, had several criteria:

• Publishes data on a regular basis such that important inci-
dents can be monitored

• Capable of capturing incidents in a unique way, making it
useful for integration

• Data can be obtained at low or no cost, reducing operational
expenses of the SIGMUS system in the long term.

To that end, we chose 10 different data sources, across 3 modal-
ities: image, text, and tabular. A summary of each data source is
described in Table 2.

During the Data Ingestion step shown in Figure 3, we have
modality-specific processes for ingesting, filtering and organizing
into our data warehouse. This is necessary as each data source
presents different methods of publishing their own data. Our data
warehouse provides both a common interface for interacting with
all the ingested data, as well as durability for such data. We imple-
ment the Data Ingestion for each modality using methods such as

scraping, web API access, email alerts, or via a 3rd party capable of
querying the data source at a lower cost (such as IFTTT for X.com).
After obtaining the data, we perform some degree of processing
in order to obtain the described attributes in Table 2, and filtering
data involving Los Angeles County. We choose Los Angeles County
to demonstrate the {sysname system as it often has incidents oc-
curring (such as sporting and cultural events, emergencies such as
wildfires and earthquakes, and various political/social activities).

While theAttributes column in Table 2 listsmost of themodality-
specific information our system ingests, it doesn’t list metadata
such as location, direction, time which is also used in our system.
The In. Frequency column describes the frequency at which we
poll the data source in order to obtain new data. Note that even for
event-based sources (such as tweets or alerts), we interface with
them via a 3rd party (such as an email server) which stores the data
for us to poll. The In. Latency column describes the worst case
latency between the time data is published to the time our system
ingests the data. In some cases this is marked as none, since the
polling process obtains the most recent published measurement.

Our data warehouse stores the ingested data for durability before
integrating different sources together into the live knowledge graph.
This data warehouse uses both time series storage (to allow for
specialized to time-indexed data) while the blob storage allows for
better scaling of unstructured data.

4.2 Knowledge Graph and Integration
The live knowledge graph acts as a working memory for integrating
different data sources together and providing a visual interface
for users to identify events and their connections. To create this
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Figure 3: Technical architecture for ingesting knowledge into a live knowledge graph for urban analysis.

Data Source Attributes Data Publish Method In.
Frequency

In.
Latency

Data Filters

GDELT events
[9]

news article URLs, named ac-
tors, CAMEO event codes, Geo
names

Zip files of CSVs in 15 minute
intervals

15min 15min Mentions of Los Ange-
les

Caltrans PeMS
[25]

Traffic incidents, vehicle speeds,
vehicle occupancy

Zip files of CSVs updated daily 1 day 1 day incidents and sensors in
LA

Caltrans CCTV
[2]

images from highway cameras Live video streams 15min None Cameras in LA county

ALERT Califor-
nia [1]

images from wildfire cameras Live video streams 30min None Cameras in LA county

Noise Planet
[13]

noise levels in db(A) Zip files updated daily 1 day 1 day Measurements from LA

SCEDC Seismic
[20]

seismic waveform data from
earthquake monitoring stations

Zip files of waveform data up-
dated daily

1 day 1 day Seismic stations in LA
county

OpenWeather
[6]

wind speed, precipitation, and
weather descriptions

API-based access, updated
ẽvery 10 minutes

1 hour None Weather stations in LA
county

PurpleAir [15] PM2.5 API-based access, updated
ẽvery 2 minutes

1 hour None Outdoor sensors in LA
county

X.com Tweet author, emergency type,
location, tweet text

Social network postings (event-
based)

15min 15min LA emergency service
accounts

Citizen App [3] Text alerts, alert category, loca-
tion of alert

App alerts (event-based) 15min 15min Alerts about locations
in LA county

Table 2: Summary of data extracted from different data sources

knowledge graph, we first must integrate our different data sources
together and create connections based on our ontology.

Each general modality type (image, text, and tabular) have dif-
ferent associated processes with them.

Actor and Event Parsing uses LLMs to identify any real world
organizations and persons involved in the text, as well as classifying
these into the corresponding CAMEO term [7]. In addition, it must
categorize the event occurring between the actors using CAMEO
event terms [7], as well as identifying any alerts or emergencies
using the Common Alerting Protocol (CAP) [4], if any. An high
level example of this process is shown in Figure 4.

In addition to establishing the actors and events, we also at-
tempt to identify any noteworthy incidents. As major incidents will

have an associated name (i.e. Palisades Fire 2025) created by news
agencies, we identify incidents primarily using the news modality
(GDELT). Later on, we use the incidents as a way of connecting
different modalities together.

This process of identifying actors can be fairly time intensive,
particularly as the LLM is prompted with a list of possible names
which can be referring to the same actor (as well as the context,
such as location, association with other actors, or other relevant
news information). As the number of actors present in our knowl-
edge graph increases, this process can become incredibly inefficient
especially as the number of input tokens increase. Other problems
may also arise as the input begins to reach the maximum input
length of the LLM model. Thus, we utilize a modified word edit
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Figure 4: Example of actor and event parsing

Figure 5: Example of visual event classification

distance which allows for relaxed penalties when matching part
of names. Using this, we obtain some top-k similar set of names
which are used to query the model.

Visual Event Classification uses a Vision-Language Model
(VLM) to caption images and identify interesting occurrences, if any.
An example of this process is shown in Figure 5. Our main objective
is to transform visual data into a human readable format which
can both be stored on the knowledge graph, as well as utilized in
downstream LLM reasoning.

Time Series Analysis simply involves statistical analysis of
values as well as a historical comparison at different intervals (e.g.
1 hour, 1 day, 1 week). The result of this analysis is also stored on
the knowledge graph, and allows for downstream LLM reasoning
to identify anomalies or correlate values across modalities.

Having produced additional annotations for text, image, and
tabular data, we create reports (i.e. from an image, a news article,
a sensory reading). After generating our reports, we can begin to
link information across modalities via incidents.

4.2.1 Cross Modality Linking. We connect reports from different
modalities by linking them to the same shared incident. In this work,
we determine connections on every incoming report for each data
source (aside from GDELT events, as that data source is focused on
generating incidents).

Once the report is processed depending on its modality (as de-
scribed in the above sections), it is inserted into our knowledge
graph. After it is inserted into our knowledge graph, we query the
knowledge graph for all incidents (as well as some additional re-
lated context, such as related time and geographic information for
that incident). We feed the given report’s information (e.g. image

Figure 6: Example of cross modal linking

caption, trends) into an LLM, along with the list of the incidents
and contexts. An example of this is shown in Figure 6

4.2.2 Incident Merging and Organization. In order to both disam-
biguate different names which refer to the same incident, we use
a RAG approach. Similar to the problems arising in actor parsing,
there may be many incidents, both ongoing and historical which
may be relevant to a new incident. In order to efficiently query the
model, we also provide a similarity ranking of incidents outside of
LLMs using a vector database and text embedding model to store
embeddings of an incident and associated description of the inci-
dent. Given a new incident and its news text, we search through
existing embeddings and rank them by similarity. Finally, we use
the top-k similar incidents and obtain the text of their original news
article. We feed this as context for the LLM to perform a selection
over the top-k similar incidents to decide if the given incident can
be organized under the same name.

5 Evaluation
We evaluate SIGMUS using two LLMs. One LLM is a DeepSeek-R1
70B model, which we operate on an H100 GPU server hosted on
our local premises. Another is the cloud-based OpenAI GPT-4o
model. The reason for these two different models is mainly due
to quality of the output, with the GPT-4o performing significantly
better than the DeepSeek model on the cross-modailty linking task.
For that reason, we rely on the GPT-4o model for the cross-modality
linking task, while for all other tasks we utilize DeepSeek-R1. For
Visual Event classification, we rely on a Visual Large Language
Model called NVILA [37], which also runs on the local H100 server.
During the Incident Merging and Organization task, we utilize a
vector database called Marqo [12], which allows us to find similar
incidents based on their textual embeddings. Our data warehouse
uses TimescaleDB for its time series storage, and SeaweedFS for
the blob storage. All ingested data is organized and visualized in
Neo4j, the knowledge graph used in SIGMUS. In our evaluation,
data storage services (i.e. time series, blob, vector, KG) operate on
the same desktop PC.

It is also worth noting that we mainly use the 2025 Los Angeles
Wildfires as our case study. As not all modalities are relevant or
have data from this period of time, we only focus on a subset of
the data sources described in Table 2. More specifically, we use
GDELT events, PeMS, CCTV, OpenWeather, and PurpleAir. For
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Figure 7: Incident Merging and Organization

Data Source Processing Latency (s) KG insert latency (s)
GDELT events 39.3795 30.8118
Caltrans PeMS 0.0105 0.0387
Caltrans CCTV 5.905 0.0247
ALERT California 6.4577 0.0507
Air Quality 0.0043 0.0207
Weather 0.0144 0.0267

Table 3: Latency of ingesting a single report from each data
source

the remaining sources, we either lacked data from that period of
time, or they are not as relevant to the incident itself (i.e. seismic
information).

Table 3 describes the average time, in seconds, to ingest a single
report from each data source and add it to the knowledge graph.
While these times prove to be quite slowwhen performing historical
analysis, the goal of SIGMUS is to execute and ingest data in a live
manner - thus, these reported times are not batched operations.

As mentioned in section 3, a single report is treated as an indi-
vidual news article, image, or row in a table. Note that depending
on the modality, the processing and knowledge graph latency may
be affected. For example, GDELT events (being a text modality)
involves calling an LLM to identify actors, events, and incidents
(which makes the bulk of the processing latency). However, when
inserting such data into a knowledge graph, we have to disam-
biguate names which refer to the same entity. These are two kinds
of disambiguation processes which occur when we insert items into
the knowledge graph: Actor disambiguation and Incident disam-
biguation. Note that because event names are canonical (generated
from [7]), we do not perform disambiguation for these.

Actor Disambiguation To disambiguate similar actors, SIG-
MUS first identifies a set of top-k similar actors based on word edit
distance of their names, and prompts the LLM to identify whether
these top-k actors (and their context, such as news report topic, lo-
cation, etc) are likely to be the same actor. On average, this process
of actor merging takes 8.1101 seconds on average, with each report
possibly involving multiple actors.
IncidentDisambiguationWhen inserting incidents into the knowl-
edge graph, sysname identifies the top similar existing incidents
based on both its label (e.g. "2025 Pacific Palisades Wildfire") as well
as the original text from the article. This process of ranking the top

similar incidents is done via vector search in Marqo [12], which
produces embeddings of each incident and allows for similarity
searching given a query. After obtaining the top-k similar incidents,
our system prompts the LLM to identify if the inserted incident
already exists in the top-k. In addition, the LLM also identifies if the
inserted incident related to another incident, and we mainly focus
on "IS_PART_OF" as a possible relationship between incidents. This
process of inserting incidents takes 7.8677 seconds on average.

6 Discussion
6.1 Future Evaluation
While much of our evaluation describes qualitative results for dif-
ferent modalities of data and some limited performance analysis
of SIGMUS, there is still much evaluation to be done in the future.
First is determining a metric for evaluating the quality of connec-
tions made across modalities. While for some cases this is fairly
straightforward (e.g. CCTV image of a fire is captures information
about a specific known fire incident) while for other cases it may
be more complex (poor air quality at a particular location may be
affected by a faraway incident such as smoke from a wildfire, or a
local cooking action). Verifying connectivity in these more complex
cases requires significant user effort in examining both historical
and neighborhood information to reach a conclusion.

There is also the issue of consistent outputs across different mod-
els. Each LLMmay produce a different set of connections within our
knowledge graph, and it may be useful in future work to use voting
strategies among a set of LLMs to determine the most likely set of
connections. A similar issue arises with the inputs to LLMs - small
changes in the text prompt also affect performance, thus requiring
some degree of prompt tuning to achieve the best performance.

6.2 Case studies
In this work we only examined the 2025 Los Angeles Wildfires.
While this incident itself is quite interesting (with multiple sub-
incidents and relevance to multiple different data sources), our
system may also be applied to other incidents. In the future, we
may consider major entertainment events (such as sports or music),
or cases more relevant to domestic security, should they arise. In
addition, our geographic scope has thus far been limited to Los
Angeles as our main urban space of interest, but other cities may
present more interesting case studies as well. As there is a plethora
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Figure 8: Examples of linking multimodal reports with incidents

of public data sources collecting information for Los Angeles, we
found it easier to start off in this location.

7 Conclusion
In this work, we introduced SIGMUS, a system that leverages
Large Language Models (LLMs) to integrate and reason over mul-
timodal urban data streams for the purpose of incident detection
and knowledge organization. By unifying fragmented sensory in-
puts—including text, image, and tabular data—into a structured,
semantically rich knowledge graph, SIGMUS enables a more com-
prehensive understanding of complex urban events such as wild-
fires, environmental hazards, or public safety incidents.

Through our case study of the 2025 Los Angeles wildfires, we
demonstrated the system’s ability to qualitatively associate dis-
parate data sources and derive contextually relevant relationships
between them. Our findings suggest that LLMs can serve as pow-
erful tools for bridging the gap between raw sensory input and
actionable urban intelligence, particularly when world knowledge
and contextual reasoning are required.

This work highlights the promise of LLM-powered knowledge
systems in urban computing, especially for real-time monitoring
and historical analysis of city-scale phenomena. Future directions
include developingmore case studies and incorporatingmore robust
evaluation strategies for the quality and correctness of inferred
relationships.
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