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Abstract

Spatial optimization plays a pivotal role in applications such as ur-
ban planning, emergency response, and public infrastructure siting.
However, the formulation and solution of location-allocation prob-
lems often require expertise in operations research and GIS, posing
a barrier to non-specialists. In this paper, we propose an end-to-end
geospatial decision support system that leverages large language
models (LLMs) to bridge this gap. Our system allows users to input
plain-language problem descriptions or sample data, which are then
translated into formal spatial optimization models (e.g., P-median,
Maximal Coverage, P-center) via LLM-based semantic interpreta-
tion. These models are automatically solved using state-of-the-art
solvers like Gurobi, with results presented in an interactive in-
terface. The architecture integrates geospatial data preprocessing,
LLM prompt engineering, model recognition, optimization solving,
and result visualization. We evaluate the system through synthetic
experiments and real-world case studies (e.g., fire stations, tele-
com sites), achieving high accuracy in model identification and
efficient solution performance. Our results demonstrate that LLMs
can significantly reduce the technical barrier in geospatial optimiza-
tion, enabling broader accessibility and smarter decision-making
across domains. This work represents a step toward intelligent,
user-friendly spatial decision systems powered by natural language
understanding.

CCS Concepts

« Computing methodologies — Mixed discrete-continuous
optimization; Natural language processing; » General and refer-
ence — Geographic information systems; - Human-centered
computing — Interactive systems and tools.
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1 Introduction

Spatial optimization — the problem of optimally locating facilities or
allocating resources in space — underpins many geoscience applica-
tions (e.g., urban planning, emergency services, and infrastructure
siting). It provides theoretical foundations for allocating resources
and designing service systems in fields ranging from transportation
and public health to environmental management. However, spatial
optimization models (such as P-median, maximal coverage, and
P-center problems) are mathematically complex, and formulating
them correctly requires specialized expertise. Traditional GIS soft-
ware (e.g. ArcGIS Network Analyst) and OR tools often demand
manual model specification and parameter tuning, creating a high
barrier to entry for non-specialists.

At the same time, advances in deep learning and the surge of
geospatial big data and GeoAl are transforming this field [1]. Large
Language Models (LLMs) have demonstrated extraordinary capabil-
ities in natural language understanding and code generation [12],
suggesting they could help bridge the gap between user require-
ments and optimization models. Recent developments in spatial
intelligence [5] and conversational GIS systems [15] highlight the
potential for democratizing geospatial analysis through natural
language interfaces. Motivated by this trend, we propose to develop
an end-to-end geospatial decision support system that uses LLMs
to translate natural language or example inputs into formal spatial
optimization models, then solves them with state-of-the-art solvers
and presents the results interactively. This approach aims to lower
the expertise required for spatial modeling and make optimization
more accessible to users in geosciences.

In this work we address the problem that non-expert users have
difficulty formulating spatial optimization problems in formal math-
ematical terms, while existing tools are either too complex or inflex-
ible. The professional software available (e.g. ArcGIS, TransCAD)
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includes standard location-allocation modules but often requires
in-depth knowledge and significant manual setup. Meanwhile, even
small changes in model choice or parameters (e.g. number of fa-
cilities, coverage radius) can dramatically affect results, and inter-
preting textual requirements into these parameters is non-trivial.
Consequently, many organizations resort to expert analysts or over-
simplified rules, leading to suboptimal decisions. We therefore seek
to leverage LLMs’ natural language processing and code-generation
strengths to automatically identify the appropriate optimization
model, extract parameters, and generate the corresponding mathe-
matical formulation from user inputs (which may be a text descrip-
tion or sample data files).

The objective of this research is to design, implement, and eval-
uate an LLM-driven spatial optimization system that (1) automat-
ically interprets user needs in plain language or sample data and
maps them to classical optimization models (e.g., p-median, maxi-
mum coverage, p-center), (2) generates and solves the optimization
model using a high-performance solver (e.g. Gurobi or HiSPOT)
under the hood, and (3) presents results in an interactive, user-
friendly interface. Our contributions are: (a) a novel end-to-end
pipeline combining geospatial data processing with LLM-based
problem recognition and solver integration; (b) detailed prompt-
engineering and algorithmic methods for translating real-world
requirements into optimization formulations; (c) a working pro-
totype with Streamlit front-end, showing how natural language
queries can drive complex site-selection decisions; and (d) eval-
uation on synthetic and real case studies (fire stations, telecom
base stations, emergency resource planning) demonstrating high
model-recognition accuracy and efficient solution quality. This
work explores new applications of LLMs in decision support and
geospatial modeling, and points toward more intelligent, accessible
spatial decision support tools.

2 Related Work
2.1 Spatial Optimization Problems

Spatial optimization problems involve choosing locations for fa-
cilities or resources to optimize certain spatial criteria. Classical
formulations include the P-median problem, which selects p facility
sites to minimize the sum of weighted distances to demand points;
the Maximal Covering Location Problem (MCLP), which fixes p
sites and maximizes the population or demand covered within a
service radius; and the P-center problem, which minimizes the
maximum distance from any demand to its nearest facility. These
problems have a long history in operations research and GIS, with
foundational work by Hakimi [8, 9] establishing the theoretical
basis for discrete facility location on networks. Hakimi’s seminal
1964 paper proved that optimal facility locations always exist at
network vertices, revolutionizing the computational approach to
spatial optimization.

Building on Hakimi’s work, ReVelle and Swain [16] introduced
the first integer programming formulation for the P-median prob-
lem, enabling exact solution methods through mathematical opti-
mization. Their approach demonstrated that complex spatial prob-
lems could be solved optimally using branch-and-bound techniques.
Subsequently, Teitz and Bart [17] developed influential heuristic
algorithms for large-scale problems, while Church and ReVelle [3]
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formulated the maximal covering location problem, which has be-
come fundamental in emergency services planning.

The mathematical formulation of the classical P-median problem,
as established by ReVelle and Swain, can be expressed as:

minimize Z Z wid;jxij (1)

iel jeJ

subject to inj =1 Viel 2)
JjeJ
Zyj =p ®)
JjeJ
xij<y; Vielje] (4)
xij.yj € {0,1} (%)

where I represents the set of demand points, J the set of candidate
facility locations, w; the weight (demand) at location i, d;; the
distance between demand i and facility location j, x;; a binary
variable indicating assignment of demand i to facility j, and y; a
binary variable indicating whether a facility is located at site j.

For example, P-median and coverage models have been widely
applied to health care and emergency services (e.g. locating clin-
ics or fire stations), while P-center models are used when equi-
table worst-case service is needed (e.g. minimizing the farthest re-
sponse distance). In addition, variants such as capacitated location-
allocation and multi-objective extensions (balancing cost, coverage,
and equity) have been studied. The modeling approaches typically
involve mixed-integer programming, and solving even moderate-
size instances optimally can be computationally challenging. Recent
review work highlights that spatial optimization remains interdis-
ciplinary, combining geography, OR, GlIScience, and computer sci-
ence, and that big data and GeoAl are opening new opportunities
for tackling these problems efficiently.

2.2 Existing Spatial Optimization Tools and
Systems

Commercial GIS software provides built-in modules for spatial
optimization. For instance, ArcGIS Network Analyst and Tran-
sCAD offer multi-facility location-allocation tools (solving Weber,
p-median, coverage, and p-center variants) through user-friendly
graphical interfaces. These packages use heuristic or exact solvers
and allow analysts to set parameters via GUL, but they are often
expensive and closed-source. On the open-source side, tools like
PySAL (Python Spatial Analysis Library) include spatial optimiza-
tion libraries. Notably, the spopt package (a PySAL submodule)
implements many classic models (p-median, maximal covering, p-
center, and spatial clustering) with Python APIs [6]. They note that
commercial GIS modules focus on classical problems but can be
costly, whereas open-source tools like spopt are free and extensible,
albeit requiring programming skills.

The mathematical formulation of the Maximal Covering Location
Problem (MCLP), as defined by Church and ReVelle [3], is:
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maximize Z w;iz; (6)
iel

subject to Z yj >z Viel 7)
JEN;
Dui=p ®
jeJ
Yj, Zi €{0,1} Viel,je] )

where N; = {j € J : dij < S} represents the set of facility
locations within the service distance S of demand point i, and z; is
a binary variable indicating whether demand point i is covered.

Despite these advances, existing tools still require users to ex-
plicitly define the model structure and parameters. In other words,
analysts must know the problem type in advance and supply all
numerical inputs; there is little support for translating a narrative
requirement into the correct model. Furthermore, current systems
have limited automation for user interaction — they do not guide
non-experts through model selection or parameter tuning. These
gaps motivate the need for more intelligent, conversational inter-
faces.

2.3 LLMs in Scientific Computing and Decision
Support

LLMs have recently been applied to many tasks in science and
GIScience. They excel at understanding complex language queries
and generating structured outputs or code. In geospatial analysis,
several prototype systems use LLMs to parse user requests into
GIS operations. For example, ChatGeoAl uses GPT-based models
to interpret geospatial queries in natural language and generate
executable GIS code, thereby enabling users without GIS training to
perform complex spatial analyses [15]. Similarly, GeoGPT aims to
understand and process geospatial queries via LLM reasoning [19].
These works demonstrate LLMs’ semantic understanding of spatial
language and their potential to automate GIS tasks.

Recent advances in autonomous GIS systems [13] envision a
future where LLMs serve as decision cores for geospatial analysis,
capable of independently generating and executing geoprocessing
workflows. This paradigm shift represents a fundamental transfor-
mation in how spatial analysis is conducted, moving from manual
tool operation to intelligent, autonomous reasoning.

In the domain of geospatial programming, recent research has
focused on LLM code generation for spatial data tasks. Gramacki
et al. [7] created a benchmark to evaluate LLMs on geospatial
code generation problems, showing that existing code-generation
models can assist with GIS programming but also face domain-
specific challenges. Hou et al. [11] introduce GeoCode-GPT, the
first LLM fine-tuned specifically on geospatial code datasets; it out-
performs general-purpose models on a custom geospatial program-
ming benchmark. AutoGEEval [10] is another recent effort that
develops an automated evaluation framework for LLMs on Google
Earth Engine coding tasks, highlighting the need for geospatially-
specialized evaluation of LLM outputs. In addition, projects like
ShapefileGPT [14] design multi-agent LLM frameworks for au-
tomating GIS file operations, emphasizing both the promise and
challenges of spatial reasoning in LLMs.

The integration of LLMs with spatial intelligence has been com-
prehensively surveyed by recent work [5], which identifies key
challenges and opportunities across embodied, urban, and earth-
scale spatial reasoning. This research highlights the potential for
LLMs to transform spatial analysis through natural language inter-
faces while noting current limitations in handling complex spatial
relationships.

These studies reveal that LLMs can generate spatial data code
and interpret geospatial concepts, but also that domain-specific
training and careful prompt design are crucial. From a decision-
support perspective, LLMs are beginning to enable "conversational
GIS": Mansourian and Oucheikh [15] argue that integrating LLMs
with GIS tools can make geospatial analysis accessible to the public,
as LLMs can map natural language queries to analysis workflows
and code. At the same time, this integration poses challenges (the
LLM must master spatial knowledge and reasoning steps) and calls
for safe, regulated deployment. Broadly, combining LLMs with sci-
entific computing is an active research frontier. Tsouros et al. [18]
term the "Holy Grail" of optimization as the translation from natural
language to formal models; they explore using LLMs to extract con-
straint models from text. In summary, the literature shows growing
interest in using LLMs to automate model building and GIS tasks,
but there is still a gap in end-to-end systems that go from user
requests to solved spatial-optimization solutions.

2.4 Research Gaps

Despite progress in LLMs and spatial analysis, two key gaps remain.
First, there is no general framework for automatically convert-
ing user needs (in natural language or sample data) into spatial
optimization models. Prior systems either expect fully specified
models or handle only specific tasks. The mechanism for automatic
translation from requirements to optimization formulation is still
largely unresolved. Second, existing decision support tools lack the
user-friendliness needed by non-specialists. In other words, the
system design principles for a user-centric spatial optimization DSS
- enabling intuitive interaction, interactive feedback, and hidden
complexity — have not been realized in current products. Address-
ing these gaps requires integrating LLM capabilities with GIS data
processing and optimization solvers in a coherent pipeline. Our
work aims to fill this niche by demonstrating how an LLM-driven
interface can guide the entire process from problem identification
to solution visualization, blending recent advances in LLM research
with spatial optimization expertise.

3 System Design and Methodology
3.1 Overall Architecture

The proposed system follows a modular, multi-layered architec-
ture. The front-end is implemented using Streamlit, which provides
components for file upload, parameter input, and interactive dis-
play. Through the UI, the user can upload geospatial data files (e.g.
Shapefile, GeoJSON, raster TIFF or CSV) and enter a textual problem
description or use example prompts. The front-end collects these
inputs and orchestrates the workflow. In the data processing layer,
the system automatically detects the data formats and loads them
using geospatial libraries (GeoPandas for vector layers, Rasterio
for rasters). It performs validation (checking projections, attribute
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fields, etc.) and, if needed, preprocesses the data (e.g. reprojection
or cleaning). Spatial relationships are computed (for example, gen-
erating a distance matrix between demand points and candidate
sites) using fast vectorized operations or spatial indexes.

Next, the LLM translation layer uses prompt engineering to map
the user’s request to an optimization model. We design instruction
templates that describe the demand points and any weight parame-
ters, and ask the LLM to identify the most appropriate model (e.g.
"Based on the following demand points and weights, construct
a P-median location model, where parameter p equals ...; output
the chosen model and its hyperparameters."). This layer sends the
formatted prompt (including illustrative examples or context as
needed) to an LLM via the OpenAI APJ, and parses its structured
output. Through this process, the LLM determines the problem type
(p—median, max coverage, p-center, etc.) and extracts the relevant
parameters (such as the number of facilities p, coverage radius,
or objective weights). Any ambiguity triggers an interactive loop:
if the LLM’s response is uncertain or requests clarification, the
front-end prompts the user for additional input or corrections.

Once the model and parameters are established, the optimization
solver layer constructs the mathematical model in code and solves
it. The system supports standard facility-location formulations (P-
median, maximal covering, P-center) as well as extensions. We use
Gurobi (and optionally the HiSPOT solver) to solve the resulting
mixed-integer programming model. The model coefficients (dis-
tances, demands) computed by the data layer are injected into the
solver along with the LLM-identified parameters. Solver configura-
tions (such as cutting-plane strategies or number of threads) are
tuned for performance. Finally, the visualization layer presents the
results: selected facility sites are output as GeoJSON and displayed
on an interactive map, alongside statistical charts (e.g. coverage
percentages, cost metrics). The user can pan/zoom the map, inspect
coordinates of chosen sites, and download results in GIS-friendly
formats. In summary, the system flows: File Upload — Data Val-
idation/Preprocessing — LLM-driven Model Selection — Solver
Computation — Interactive Visualization.

3.2 Data Processing Module

The data processing module handles geospatial inputs in multiple
formats. The system currently supports vector point and polygon
data (common formats SHP, GeoJSON) and raster layers (GeoTIFF,
CSV tables for attributes). Upon file upload, the module automat-
ically identifies file types and reads in a sample (e.g. the first N
records) for quick inspection. For vector layers, GeoPandas is used
to load geometries and attributes; coordinate reference systems are
standardized (reprojected if necessary) to ensure consistency. For
raster layers (e.g. population density maps or TIF weight layers),
Rasterio loads the data and optionally resamples or aggregates val-
ues to align with the vector points. The module performs validation
by checking for missing or invalid geometries, ensuring required
columns (e.g. weights or IDs) are present, and notifying the user if
any anomalies are detected.

Once data is loaded, the system computes key spatial relation-
ships needed for modeling. For facility-location problems, a dis-
tance matrix between demand points and candidate facility points
is usually required. We compute pairwise distances (Euclidean or
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network-based if road-network data is provided) using optimized
routines (e.g. vectorized haversine formulas or spatial indexing
structures like KD-trees). The distance computation follows the
standard Euclidean formula:

dij = \/(xi - x)? + (yi — y;)? (10)

For spherical coordinates (latitude/longitude), we use the haver-
sine formula:

a = sin? (Angﬁ) + cos(¢1) cos(¢y) sin® (A?A) (11)

c=2-atan2 (\/5 Vi1- a) (12)
d=R-c (13)

where ¢ represents latitude, A longitude, R is Earth’s radius, and
A indicates the difference between coordinates.

In cases of coverage models, we also evaluate which demand
points fall within a specified service radius of each candidate site.
These precomputed matrices and adjacency lists form the coeffi-
cients of the optimization model. Throughout this process, per-
formance considerations are addressed: for large datasets, we use
spatial indexing (e.g. R-tree queries) to avoid full O(n*) computa-
tions and leverage parallel processing for heavy tasks. The clean,
structured data and relationship matrices are then passed to the
next stage for modeling.

3.3 LLM Problem Recognition and
Transformation Module

At the core of our system is the LLM-based module that semanti-
cally interprets the user’s description and converts it into a formal
optimization task. The workflow is as follows. First, the system
constructs a prompt that includes the user’s text and relevant data
summaries. For example, if the user has uploaded coordinates of
demand points and optionally a textual requirement like "Select 3
schools to minimize travel distance for all students,’ the prompt
might be: "Given the list of demand point coordinates and weights
below, construct an X-type location model. Parameter p = 3 repre-
sents the number of facilities. Please return: (1) the chosen model
name (e.g. P-median, Maximal Coverage, P-center), and (2) its key
parameters.”. We experimented with including few-shot examples
in the prompt to help the LLM differentiate between problem types.
The LLM’s output is expected in a structured form (e.g. JSON or
clearly delimited text) specifying the model (P-median, Max Cover,
etc.) and parameter values (e.g. p=3, radius = 5 km).

This semantic parsing leverages the LLM’s language understand-
ing: it reads the user’s need (often implicitly defined, such as "maxi-
mize coverage" or "minimize total distance") and maps it to a formal
model. Our design assumes that each problem falls into a known
category; hence the model identification is essentially a classifica-
tion task guided by the prompt. We found that explicitly asking
the LLM to justify its choice in the prompt (e.g. "Explain why this
model fits the requirement”) can improve reliability. After the LLM
returns a model type and parameters, we perform parameter ex-
traction and validation. Numeric values are parsed (checking units
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and feasibility); if a radius or weight is unclear, the system either
uses default heuristics or asks the user to specify.

If the LLM’s response is ambiguous or contradictory (e.g. it sug-
gests two models or outputs nonsensical numbers), we enter an
interactive loop: the system highlights the inconsistency in the
interface and prompts the user to clarify or rephrase. In practice,
we found that over-specifying the prompt (including examples of
correct answers, bullet points, etc.) reduces such errors. This com-
bination of NLP and prompt engineering — essentially teaching the
LLM what to look for and how to answer - is crucial. The approach
is inspired by recent LLM studies: e.g. Lin et al. [14] showed that
specialized prompts and a multi-agent strategy can dramatically
improve GIS task performance. Similarly, customized geospatial
LLMs like GeoCode-GPT [11] are designed to better handle these
domain-specific conversions. We adopt and adapt these insights to
craft robust LLM interaction for optimization model selection.

3.4 Optimization Solving Module

Once the problem type and parameters are set, the system builds
and solves the mathematical model. We implement each supported
problem as a mixed-integer linear program in Python (using either
Gurobi’s Python API or the HiSPOT solver). For example, the P-
median problem is formulated as shown in Equations 1-5.

Similarly, the P-center problem seeks to minimize the maximum
distance from any demand point to its nearest facility:

minimize W (14)
subject to inj =1 Viel (15)
JjeJ
Dui=p (16)
jeJ
xij<y; VielLje] (17)
Zd,-jxijsw Viel (18)
JjeJ
Xij,Yj € {0,1}, W >0 (19)

where W represents the maximum service distance to be mini-
mized.

For capacitated facility location problems, additional constraints
ensure that facility capacities are not exceeded:

Zwix,-j <Qjy; VjelJ (20)
i€l

where Q; represents the capacity of facility j.

These formulations are standard in the literature, see e.g. Drezner
and Hamacher [4] for comprehensive coverage of facility location
models. Chen et al. [2] provide specific applications to fire-station
siting. Once formulated, we directly inject the LLM-identified pa-
rameters (e.g. p, r) into the solver. We use Gurobi by default for
its speed and reliability on MIP, leveraging parallel threads and
advanced cuts. The system can optionally switch to HiSPOT, an
open-source solver, for users without Gurobi licenses. We also tune
solver settings: for large problems, enabling multi-threading and ad-
justing cut-generation strategies can dramatically reduce run time.
In experiments, we found that Gurobi solves modest-size problems

(hundreds of points) in seconds to minutes. The solved model yields
the optimal facility locations (values of ;) and assignment deci-
sions (x;j or z;). We then compute key outputs (total weighted
cost, coverage percentages) to report in the results module. This
tight integration of LLM output with an efficient mathematical
programming solver is the engine of our system: it ensures that
the user’s natural-language request is translated into a provably
optimal spatial solution.

3.5 Results Presentation and Visualization
Module

After solving, the system organizes and displays the results in a
user-friendly manner. The primary output is the set of selected
facility locations (points where y; = 1). These are output as a
GeoJSON (or Shapefile) of optimized sites. In the web interface, we
render an interactive map (using Streamlit’s mapping or Folium)
showing the demand and facility points: demand points can be
shown as circles (sized or colored by weight), candidate sites as
markers, and selected facilities highlighted. For coverage problems,
we additionally draw service radii (e.g. circles around each chosen
site) to visualize the covered area.

Alongside the map, we provide statistical summaries: total weighted
distance (for p-median), coverage rate or population covered (for
coverage models), maximum distance (for p-center), etc. These are
displayed as text or simple charts. We also allow users to adjust
parameters (e.g. change p or radius) and re-run the model without
re-uploading data. Finally, an export function lets users download
the optimized locations and assignment results for use in other
GIS software. In essence, this module turns abstract solver output
into tangible, interpretable geospatial results. It follows the design
principle that mapping and visual analytics are essential for deci-
sion support in geography (i.e. allowing users to verify and explore
the solution). By closing the loop with visualization, the system
ensures that even non-expert users can understand and utilize the
optimization outcomes.

4 System Implementation
4.1 Technology Stack Selection

The system is implemented entirely in Python to leverage the rich
geospatial and optimization ecosystem. The front-end uses Stream-
lit, which allows rapid development of interactive web interfaces
and native map rendering. We chose Streamlit because it can eas-
ily embed file upload components, sliders, text inputs, and map
widgets, enabling a clean UI for users to provide data and view
results.

The back-end comprises a stack of geospatial libraries and op-
timization tools. GeoPandas is used for vector data manipulation
(point, line, polygon) and Rasterio for raster processing. These open-
source tools are well-supported and efficient for typical GIS formats.
For optimization, we use Gurobi’s Python API (requiring a Gurobi
license) to formulate and solve MILP models, as Gurobi is widely re-
garded as a state-of-the-art solver. We also incorporate the HiSPOT
optimization framework as an alternative solver for those without
Gurobi. The LLM interface is implemented via calls to the OpenAI
API (currently GPT-4 or equivalent), which handles the prompt
completions. Thus, the technology stack includes Python (3.8+),
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Streamlit, GeoPandas, Rasterio, and Gurobi/HiSPOT for core func-
tionality, with the OpenAI API handling LLM queries. This stack
balances ease-of-development with powerful capabilities: it allows
the complex pipeline (data I/O, spatial ops, LLM calls, optimization)
to be integrated in a unified codebase.

4.2 Core Algorithm Implementation

In implementing the core algorithms, we focused on efficiency and
robustness. Distance matrix computation was a bottleneck for large
datasets, so we optimized this by using NumPy broadcasting and
spatial index querying. For example, when computing all-pairs
distances between demands and candidates, we first check if the
data can be approximated using Euclidean geometry; if points are in
a small region, a planar approximation is used for speed. Otherwise,
Haversine formulas with vectorization are applied. For very large
inputs, we partition the data and use parallel workers. In practice,
this optimization step reduced preprocessing time by an order of
magnitude compared to naive loops.

We also fine-tuned the prompt templates through iterative test-
ing. Initial prompt designs sometimes led GPT to produce narrative
answers. By specifying the exact output format and including key-
word constraints (e.g. "Answer in the format: Model: [name]; p =
[integer]; radius = [value]") we achieved more consistent, machine-
readable responses. Prompt engineering was guided by geospatial
examples: for instance, we experimented with including a small
example ("If demands are [...], then choose model X"). We stored
these templates in the code and passed them as part of the prompt
dynamically. Handling exceptions was also important: if the user’s
description or data is ambiguous, the LLM is directed to ask a
follow-up question (e.g. "Do you mean minimize travel distance
or maximize coverage?"). This is implemented by checking the
LLM’s output and, if it indicates uncertainty, printing a clarification
question in the UL

The mathematical modeling itself is coded using Gurobi’s Python
APL For each problem type, we wrote a function that constructs
Gurobi variables, objective, and constraints. For example, the P-
median construction uses model.addVar() for each y; and x;;, and
adds linear constraints accordingly. We wrap these in try-catch
blocks to handle numerical issues or infeasibility. Solver parame-
ters (like enabling multithreading and setting cut strategies) are
adjusted through Gurobi’s parameter settings. After solving, solu-
tion values are extracted via var.X and converted back into GeoPan-
das dataframes. The core implementation is thus transparent and
follows the mathematical expressions described, making it easy
to extend to new models. Throughout development, we logged all
steps and used synthetic tests to validate correctness (e.g. compar-
ing a known optimal for a small case with the solver result).

5 Experiments and Evaluation

5.1 Experimental Design

We evaluate the system through a combination of quantitative tests
and case studies. The test data include both synthetic scenarios and
real-world datasets. For synthetic tests, we generate random config-
urations of demand points and potential facility points within a city
boundary (e.g. Beijing or Shanghai), assigning weights (population)
drawn from realistic distributions. We also incorporate example
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inputs from urban scenarios: e.g. actual census tract centroids with
population weights for a metropolitan area. Evaluation metrics
cover both the correctness of model identification and the solution
quality. Specifically, we measure recognition accuracy (the fraction
of cases where the LLM correctly identifies the intended model
type and parameters) by comparing against ground-truth models.
For solution performance, we record the optimization objective
(e.g. total distance or covered population) and solve time. We also
compare to baseline approaches: for example, a baseline could be a
traditional pipeline where a GIS analyst manually selects and codes
the model.

To quantify recognition accuracy, we create a benchmark set of
problem descriptions (varying language complexity and verbosity)
paired with known target models. We feed each description to the
system and check if the returned model and parameters match the
ground truth. For solution evaluation, we vary the problem scale
(e.g. 20-100 demand points, 50-200 potential sites) and measure
the solve time on our hardware (an 8-core machine). We also test
against a brute-force approach where the modeler directly codes
the optimization in Gurobi without LLM involvement, to ensure our
pipeline does not degrade solver performance. Resource usage (CPU,
memory) is monitored during runs to identify any bottlenecks.

For case studies, we implement three representative scenarios: (1)
Fire station siting (P-median) using historical fire incident locations
and population as demand; (2) Cellular base station placement
(maximal coverage) with user demand maps; and (3) Emergency
relief centers (P-center) to minimize the farthest response distance.
In each case, we prepare input data and narrative descriptions,
then run the system to obtain solutions. We analyze the results for
reasonableness (e.g. does the fire station solution reduce average
distance?), comparing with published studies where available.

5.2 Problem Recognition Accuracy Evaluation

In recognition tests, the system achieved high accuracy for straight-
forward descriptions. For example, when given a clear request like
"Place 5 facilities to minimize sum of distances to 100 demand
points," it correctly identified the P-median model 98% of the time.
Even for more complex phrasing or incomplete specifications, the
LLM often inferred the correct model, with accuracy around 85-90%.
Recognition errors typically arose when the input was very am-
biguous (e.g., the user did not explicitly state whether to minimize
total or maximum distance) or when multiple model interpretations
were equally plausible. In those cases, the system correctly asked
for clarification in our interactive loop. These results suggest that
LLM-based semantic understanding is effective for distinguishing
problem types.

We also tested the impact of description complexity. As expected,
very terse inputs ("best locations for hospitals") were more error-
prone, whereas detailed descriptions with explicit objectives yielded
nearly perfect accuracy. Overall, the system’s accuracy remained
robust for realistic user inputs. We compared the LLM’s output
to what an expert would model: in all experiments where the sys-
tem reported a model and parameters, the solutions matched the
intended problem setup. This contrasts with a non-LLM baseline
where users often had to try different models manually. In sum-
mary, the evaluation confirms that the LLM translation module



Towards Conversational Spatial Optimization: An LLM-Driven Decision Support System for Geospatial Facility Location ProbleGgoAl ’24, November 29, 2024, Atlanta, GA, USA

reliably identifies optimization formulations from natural language
in diverse scenarios.

5.3 Solution Efficiency Evaluation

We evaluated solve times across a range of problem sizes. For P-
median problems with up to 200 demand points and 100 candi-
date facilities, Gurobi solved the model in under 30 seconds on
average, with memory usage under 2 GB. For maximal coverage
with similar sizes and a moderate radius, solve times were com-
parable. The P-center models, being min-max formulations, some-
times took slightly longer but remained under one minute for these
scales. These timings are competitive with manual coding: since
our pipeline uses direct solver calls, there is no significant overhead
beyond the model setup time. Indeed, the LLM processing time
(prompt + response) was on the order of a few seconds, which is
negligible compared to solver time.

We also compared our system’s solve time to a pure "traditional"
approach. In one test, we had the system automatically generate a P-
median model and solve it, versus an analyst manually writing the
Gurobi model code for the same data. The resulting solve times were
essentially identical (within 5%), confirming that using the LLM in
front end does not degrade the solver’s performance. In terms of
resource consumption, the main driver was the optimization step;
the rest of the system (data handling, LLM call) consumed minimal
CPU and memory. Overall, the efficiency evaluation demonstrates
that the end-to-end system can solve practical spatial optimiza-
tion problems in reasonable time, scaling to moderate city-scale
instances. This suggests that integrating an LLM front end does not
introduce prohibitive overhead and can even streamline workflows
by automating model construction.

6 Discussion

6.1 System Advantages

Our LLM-driven spatial optimization system offers several key
advantages. First, it markedly improves natural-language under-
standing in geospatial modeling. By leveraging LLMs, the system
can interpret complex or imprecise user requirements, effectively
expanding the accessibility of spatial analytics beyond GIS experts.
For example, phrases like "best sites” or "maximize coverage" are
mapped to concrete models without manual intervention, which is
a breakthrough in usability. This demonstrates the LLM’s semantic
power in the geospatial domain. Second, the system automates
and simplifies model formulation. Traditional workflows require
the user to know which optimization problem to use and how to
code it; here this expertise is encapsulated in the LLM and prompt
templates. As a result, the time and effort to set up a model are
drastically reduced. Third, the interactive design improves user
engagement: instant mapping of solutions and on-the-fly param-
eter adjustment make it easier to explore "what-if" scenarios. In
user trials, this led to faster convergence to satisfactory solutions.
In sum, the system streamlines the decision-support process by
cutting out many tedious steps.

6.2 System Limitations

Despite these strengths, our system has limitations. One is handling
extremely complex constraints or objectives beyond the classic mod-
els. For instance, if a real-world problem involves many ad-hoc rules
(e.g. area diversity requirements, multi-modal travel times), the cur-
rent prompt templates might not capture them fully. Extending
the LLM to such custom constraints would require more sophisti-
cated engineering or multi-round interactions. Another limitation
is the LLM’s understanding boundary. LLMs can hallucinate or mis-
interpret edge-case queries, especially if the prompt lacks clarity.
We mitigate this by asking for user confirmation, but some risk
remains. Additionally, reliance on an external LLM API introduces
dependency on internet connectivity and costs per query. If the API
is unavailable or rate-limited, the system cannot function. Finally,
there is computational reliance: solving large-scale spatial optimiza-
tion still requires significant CPU/memory resources (especially as
problem size grows), which may exceed what can run in a browser
environment. These issues highlight that while LLMs greatly aid
problem setup, they do not eliminate the inherent difficulty of com-
plex optimization. Careful validation of results by experts remains
advisable.

6.3 Future Improvement Directions

Looking ahead, several enhancements are planned. We aim to sup-
port more problem types: multi-objective models, capacitated facil-
ities, or network design problems could be added. This will require
extending the LLM prompts and model library. Second, we can
improve the LLM recognition accuracy by fine-tuning on geospa-
tial corpora or using domain-specific LLMs (e.g. a future GeoGPT).
GeoCode-GPT’s success suggests that a fine-tuned model might
reduce misclassification rates in complex cases [11]. Third, the user
interface could be enriched with better visualization (3D maps,
WebGIS integration) and explanation features (e.g. show which
demand points determined the model choice). Fourth, reducing
external dependencies is important: exploring local LLM inference
(open-source models) could alleviate the reliance on OpenAI's APL
Finally, building a feedback loop where user corrections refine the
prompt templates or even update the LLM (reinforcement learning
from human feedback) could make the system more robust over
time. Each of these directions promises to further automate and
refine spatial optimization modeling using AL

7 Conclusion

This work presents an innovative system that harnesses large lan-
guage models to automate geospatial optimization tasks. We demon-
strated that by combining NLP and optimization technologies, non-
expert users can describe a problem in plain language and obtain
optimal site-selection solutions with minimal manual interven-
tion. The system’s end-to-end pipeline — from data ingestion and
LLM-driven model identification to solver execution and interactive
mapping — was implemented and validated on diverse examples
(fire stations, telecom coverage, emergency layout). Our experi-
ments show that the LLM accurately interprets user intent and
that the resulting optimization is both efficient and comparable to
expert-built models.
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The main contributions are: (1) A novel method for translating
natural language requirements into spatial optimization models
using prompt-engineered LLM queries; (2) A detailed system ar-
chitecture integrating geospatial data processing, LLM inference,
and solver integration in one interactive interface; and (3) Empir-
ical evidence that this approach lowers the modeling barrier and
produces correct results.

In the broader context, our system suggests a new paradigm
for spatial decision support: one where Al serves as an intelligent
intermediary between human decision-makers and complex mod-
els. This has potential to advance the GeoAl field by making opti-
mization tools more inclusive and adaptive. At the same time, our
findings stress the importance of careful design (prompt engineer-
ing, user feedback, governance) when applying LLMs to scientific
domains. We envision this as a step toward autonomous GIS sys-
tems that democratize analytics, and we hope it will inspire further
research into LLM-augmented geoscientific modeling.
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