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ABSTRACT
In advanced countries, care services for the elderly are becoming
essential components of urban infrastructure. Machine learning
models that use location information as training input are under
consideration for optimizing care taxi dispatch, as seen in programs
such as Adult Day Care Transportation in the US and Total Mobility
in New Zealand, for example. However, these models often rely on
privacy-sensitive data, making intercity data sharing difficult. As a
result, approaches such as federated learning have been proposed
to protect sensitive information while enabling cross-city collabo-
ration. At the same time, applying an attribute inference attack to a
shared model can lead to the leakage of users’ personal information.
In this study, we build a boarding and alighting time predictor using
a dataset of real-world care taxi traces and then apply an attribute
inference attack to evaluate how accurately an attacker can infer
each user’s walking disability in our dataset. To mitigate these pri-
vacy risks, we analyze the effects of data processing techniques on
attack vulnerability; notably, when class imbalance was handled via
SMOTE data augmentation, the attack’s accuracy increased from
61.3% to 73.0%. Our findings offer guidelines for designing privacy-
preserving machine-learning systems in the context of eldercare
transportation.
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1 INTRODUCTION
In recent decades, population aging has emerged as a defining chal-
lenge for many nations, with profound implications for health care
systems and social infrastructure. This demographic shift has pre-
cipitated an unprecedented surge in demand for long-term care
services, even as the supply of qualified care workers dwindles
owing to a contracting labor force. Globally, the World Health Or-
ganization (WHO) reports that roughly 142 million older people are
currently unable to meet their basic needs independently and that
two out of three older adults will require some form of long-term
care during their lifetime[21]. At the same time, WHO projects a
shortfall of approximately 11 million health and care workers by
2030[20], underscoring the severity of the workforce crisis. Against
this backdrop, advanced economies are exploring data-driven so-
lutions—such as machine-learning models that leverage real-time
location information to optimize care transportation—but these pre-
dictive systems often depend on privacy-sensitive inputs, raising
critical concerns about data sharing and model vulnerability. In
particular, attribute-inference attacks may allow malicious actors
to infer individuals’ residential addresses or daily routines from
ostensibly benign service logs. Thus, there exists an urgent need to
develop efficient, privacy-preserving frameworks that can accom-
modate regional heterogeneity—ranging from densely populated
urban centers to depopulated rural areas—while safeguarding sensi-
tive user information and ensuring equitable access to high-quality
care.

As a means of knowledge sharing, data sharing among long-term
care providers is the most direct approach. However, long-term
care data contains highly sensitive personal information, including
users’ health conditions, medical history, cognitive function, ADL
(Activities of Daily Living) assessments, and family structures. This
information transcends mere privacy concerns; its leakage could
potentially lead to discrimination, prejudice, and even financial or
psychological harm. As a countermeasure, applying anonymization
processing to the data is considered. However, it is known that
statistically demonstrated methods such as k-anonymity and l-
diversity can significantly degrade the performance of machine
learning models utilizing such data [5]. Especially in the long-term
care domain, even a slight decrease in prediction accuracy can
directly impact user safety and care quality, making it a challenge
to balance anonymization and utility.

In recent years, sharing only machine learning models indepen-
dently trained by each provider has also been considered. This
may appear secure, as no raw data leaves the institution. How-
ever, this approach remains vulnerable to Membership Inference
Attacks (MIA)[17], a class of privacy attacks that aim to determine
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whether a particular individual’s record was included in the training
dataset. These attacks exploit the fact that machine learning models
often behave differently on data they have seen during training
versus unseen data, particularly when models are overparameter-
ized, trained on small datasets, or lack proper regularization. Such
behavioral discrepancies can be leveraged to infer membership with
high confidence, thereby exposing sensitive personal information
even without direct access to the original dataset. MIA poses a
particularly acute threat in the long-term care domain, where the
inclusion of a single record, such as one indicating a rare medical
condition or service usage pattern, could reveal highly personal
attributes of the individual concerned. Moreover, even aggregated
or partially anonymized models can be susceptible if adversaries
have auxiliary knowledge or can systematically probe the model
through black box queries. These risks are amplified when models
are deployed across institutions, shared in collaborative settings, or
exposed through APIs.While techniques such as differential privacy
or regularization strategies can mitigate some of these vulnerabili-
ties, they often come at the cost of reduced model performance[5].
This trade-off is especially critical in healthcare applications, where
predictive accuracy directly affects service quality and user safety.
Thus, mitigating the risks associated with MIA requires careful
calibration between model utility and privacy protection, along
with an understanding of the attacker’s capabilities and available
background knowledge.

As an alternative to simple model-sharing, Federated Learning
(FL) has been proposed to enable collaborative training without
exchanging raw data [7]. In the FL paradigm, each provider retains
its local dataset and computes updates to model parameters that
are then aggregated centrally, thereby reducing direct exposure of
sensitive records. Nevertheless, recent work has shown that fed-
erated updates can still leak private information through gradient
inversion or statistical inference techniques, and that challenges
such as client heterogeneity and communication overhead com-
plicate practical deployment [19]. Consequently, even FL requires
careful protocol design and threat modeling to ensure that privacy
guarantees are upheld in real-world settings[4, 12].

MIA assumes that one possesses all the constituent elements
of a single record in the dataset without excess or deficiency. For
example, training a model such that the combination of input at-
tributes becomes large could be a partial solution to this vulnerabil-
ity. Specifically, by increasing the number of data features or using
data augmentation techniques, it is possible to increase the difficulty
for an attacker to infer the exact record. Building on this perspec-
tive, we further consider the risk from Attribute Inference Attacks,
in which adversaries attempt to reconstruct unknown features of a
user from observed data or model outputs, even without knowing
whether the user was part of the training set [25]. These attacks
represent a complementary threat model, and together with MIA,
they underline the multifaceted risks of sharing models trained on
privacy-sensitive data.

In this study, based on care taxi data that include location infor-
mation provided by a partnered long-term care provider, we discuss
the extent to which users’ data may be vulnerable. Specifically, we
examine the possibility of inferring users’ walking disability from
care taxi location traces and a prediction model trained on those
traces.Our contributions are summarized as follows: Firstly, to the best

of our knowledge, this is the first work to apply an attribute-inference
attack to a machine learning model in a taxi-related application. In
particular, we conducted an attribute-inference attack on decision
trees and evaluated their vulnerabilities by integrating spatial data
from urban environments with actual users’ sensitive personal in-
formation to assess the attack’s effectiveness in a realistic scenario.
Secondly, we investigated how insights related to data augmentation
and class imbalance in the training dataset influence the success of
attribute-inference attacks. Thirdly, we partnered with a long-term
care provider and performed data collection over a period exceeding
ten months.

2 RELATEDWORK
2.1 Privacy Preservation by Adding Noise
Spatio-temporal data, which includes user location information,
is crucial for data-driven applications. However, data collection is
costly, and it is necessary to consider the leakage of users’ private
information. Therefore, much existing research has addressed the
anonymization and hiding of trajectory data by utilizing concepts
of differential privacy and masking processes.

The approaches in [18, 23] propose protecting user privacy by
adding dummy location data, not included in the original dataset,
to the dataset. These methods are effective if an attacker cannot
distinguish the trajectory data as fake. However, there is a risk that
fake trajectory data can become unrealistic and be identified by an
attacker [8]. Differential privacy is a method that can mathemati-
cally guarantee privacy protection up to a certain level by adding
appropriate noise to the statistics of a dataset. Privacy protection
methods using this technology have also been proposed [11]. For
example, CNoise and SDD are examples of the application of dif-
ferential privacy to trajectory data [11]. While these methods can
guarantee a certain level of privacy protection by adding noise to
individual trajectories, it is known that the utility of the data in
machine learning models and spatio-temporal analysis is reduced.

2.2 Privacy Preservation by Synthetic Data
Generation

Methods that achieve privacy protection by replacing the data in the
original dataset with synthetic data have also been proposed [1, 16].
Ozeki et.al. [1] propose a method to synthesize the entire dataset’s
data to achieve k-anonymity in trajectory data, thereby ensuring the
privacy of trajectories. K-anonymity is a property of a dataset where
there are k or more users with the same characteristics, so even if an
attacker tries to identify a user based on specific characteristics, the
number of candidates can only be narrowed down to k. As a method
to achieve k-anonymity for trajectory data, [1] proposes a method
to add uncertainty to location information. However, such simple
k-anonymity-based methods are computationally expensive and do
not consider the naturalness of the generated trajectories. Therefore,
the generated data often becomes unnatural, leading to issues such
as reduced utility and the unnaturalness itself increasing the risk of
privacy leakage [3]. Furthermore, LSTM-trajGAN [16] is a method
that trains a generative adversarial network based on LSTM and
replaces the original dataset with the generated synthetic data.
While these methods can generate realistic trajectory data, they
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do not guarantee the privacy protection or utility of the generated
data.

2.3 Attacks on Machine Learning Models
A Membership Inference Attack (MIA) is a method by which an
attacker infers whether a specific data point was included in the
training data of a machine learning model. Shokri et al. (2017)
proposed a framework for MIA assuming black-box access, demon-
strating how an attacker can train a model to infer inclusion in
training data using the target model’s inputs and outputs [17]. Hu
et al. (2021) conducted a comprehensive survey on MIA, provid-
ing a classification, evaluation, and comparison of various attack
techniques and defense strategies [9].

An Attribute Inference Attack (AIA) is a method by which an
attacker infers unknown attributes (e.g., age, gender) for a partially
known data point. Zhao et al. (2021) examined the feasibility of
attribute inference attacks and showed that an attribute inference
attack might not succeed even if a membership inference attack
is successful. They also demonstrated that approximate attribute
inference is possible [25]. Mehnaz et al. (2022) proposed a method
to infer unknown attributes with only black-box access, achieving
higher accuracy than existing methods [15].

3 ATTRIBUTE INFERENCE ATTACKS
Attribute inference attacks (AIA) are a type of attack against trained
machine learning models in which an adversary leverages access to
the model to infer individuals’ sensitive attributes [25]. Such attacks
exploit statistical correlations between observable (non-sensitive)
features and unobservable (sensitive) features within the data to
reveal sensitive information, even when those attributes are not
explicitly included in the model’s outputs.

In this study, the data used to train the machine learning models
inherently contain sensitive personal information—such as users’
age, gender, and mobility capabilities—that, if linked to individuals,
may constitute a violation of privacy. Accordingly, we regard any
action by a third party (adversary) aimed at identifying personal in-
formation from a publicly released machine learning model trained
on such data as an attack.

We assume that the adversary possesses, at least partially, a list
of users who utilize a facility, or alternatively, a list of households in
which elderly individuals reside, and seeks to estimate their gender
or mobility capabilities from the machine learning model.

3.1 Definitions
We formalize the problem as follows:
Feature Vector: x = (xpub, 𝑥priv) ∈ X × A, where xpub denotes
the public (non-sensitive) attributes and 𝑥priv denotes the private
(sensitive) attribute.
Target Model: 𝑓 : X → Y is a function trained on a dataset
D = {(x𝑖 , 𝑦𝑖 )}𝑛𝑖=1 that maps input features to predictions
Adversary’s Goal: Given access to xpub and the model 𝑓 , the
adversary aims to infer 𝑥priv.

The adversary models the conditional probability distribution:

𝑃
(
𝑥priv | xpub, 𝑓 (xpub, 𝑥priv)

)
. (1)

The optimal inference strategy is to choose the value that maxi-
mizes this conditional probability:

𝑥priv = arg max
𝑎∈A

𝑃
(
𝑥priv = 𝑎 | xpub, 𝑓 (xpub, 𝑎)

)
. (2)

This approach assumes that the adversary can simulate or ap-
proximate the model’s behavior for different values of 𝑥priv.

3.2 Attack Methods
Several strategies can be employed for attribute inference:

3.2.1 Model Inversion Attack. These attacks reconstruct sensitive
attributes by exploiting the model’s output confidences. Given xpub,
the adversary searches for the 𝑥priv that maximizes the model’s
output confidence:

𝑥priv = arg max
𝑎∈A

𝑓
(
xpub, 𝑎

)
.

This method is particularly effective when the model’s outputs
are highly sensitive to changes in 𝑥priv.

3.2.2 Shadow Model Training. The adversary trains a surrogate
model 𝑓 ′ on a dataset that approximates the distribution of D.
The shadow model approximates the behavior of 𝑓 , enabling the
adversary to learn the mapping from xpub to 𝑥priv.

3.3 Theoretical Considerations
The success of attribute inference attacks is closely related to the
generalization properties of the model. In particular, models with
poor generalization (i.e., overfitted models) tend to memorize train-
ing data and are thus more vulnerable to such attacks [22]. A formal
relationship between generalization error and privacy leakage has
been established, suggesting that minimizing overfitting can miti-
gate the risk of attribute inference.

3.4 Practical Implications
Attribute inference attacks have been demonstrated in various do-
mains. In social networks, sensitive information such as political
affiliation or sexual orientation can be inferred from users’ pub-
lic posts and “likes.” In the medical field, research has shown that
specific health conditions can be predicted even from ostensibly
anonymized health records[10]. Moreover, in recommender sys-
tems, privacy guarantees are provided for both users’ sensitive
attributes and the model optimization process by combining the in-
formation perturbation mechanism of differential privacy with the
recommendation capabilities of graph convolutional networks[24].
These examples underscore the serious potential privacy risks and
recent attentions posed by attribute inference attacks, even when
sensitive attributes are not explicitly disclosed.

4 ASSUMPTIONS AND ATTACK SCENARIO
In this section, we assume that a care provider publishes a classification-
based machine learning model, trained on proprietary data, which
estimates the time required for user pick-up and drop-off at one-
minute granularity. We further assume that an attacker uses this
published model to obtain additional personal information. Figure
1 illustrates the sequence of knowledge sharing and the subsequent
attack assumed in this study.
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Figure 1: Overview of the Assumed Knowledge Sharing and Attack Flow.
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Figure 2: Distribution of Estimated Pick-up/Drop-off Times
and Actual Travel Times.

4.1 Pick-up/Drop-off Time Prediction Model
A local facility trains a model to estimate, based on its own data, the
time required for a pick-up vehicle to travel from the facility to the
user’s home or a designated meeting point. This task inherently de-
parts from travel-time estimations computed using platforms such
as OpenStreetMap1, as shown in Figure 2. This discrepancy arises
because intrinsic factors—such as the user’s preparation behavior
and walking ability—often delay actual arrival times beyond the
platform’s estimates.

As input features, the model receives:
• Departure time of the pick-up taxi,
• Latitude and longitude of the facility,
• Latitude and longitude of the user,
• Gender,
• Age,
• Walking ability,
• Temperature, Wind speed, and Humidity of the day,
• Day of the week,
• Estimated travel time provided by a map application.

Here, walking ability is divided into five levels: “Independent ambu-
lation(no assistance),” “Use of awalking cane,” “Use of a tubular(pipe-
frame)walker,” “Use of awalkerwith a built-in seat,” and “Wheelchair.”
We assume that walking ability is not directly accessible to the at-
tacker, whereas the remaining attributes, compared to walking
1OpenStreetMap. https://www.openstreetmap.org, accessed April 15, 2025.
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Figure 3: Population Distribution of Walking Aid Usage Cat-
egories.

ability, are considered obtainable by the attacker. As the machine
learning prediction model, we implement a DecisionTree. We con-
figured the decision tree to optimize splits by maximizing Shannon
entropy, thereby choosing splits with the highest information gain.
We cap the tree depth at sixteen levels and require that any internal
node contain at least two samples before splitting, as well as that
each terminal leaf contain at least two samples, which ensures that
no leaf represents a single instance and reduces sensitivity to noise.

4.2 Attack Model
The attacker, given access to input–output pairs of the published
prediction model, seeks to infer the user’s walking ability. Figure 3
shows the population distribution across the walking-ability cat-
egories. For the attacker, inferring the minority (and thus more
sensitive) classes—such as those requiring a walker or cane—carries
significant value. In our assumed attack scenario, it is crucial to
increase the confidence of predictions indicating that the user uses
a walker or cane; hence, reducing False Positive errors becomes
essential to achieving the attacker’s objective.

To address this, the loss function incorporates, in addition to the
standard Focal Loss [13], an extra penalty when a user whose true
label indicates no walking-aid requirement (class 0) is misclassified
into any other class. First, the target label 𝑦 (one-dimensional) is

https://www.openstreetmap.org
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converted to a one-hot representation over 𝐶 classes to align with
the dimensionality of the network’s output logits. If a one-hot vector
is already provided, it is simply cast to a floating-point type.

For network logits z, the softmax function is applied to compute
the probability for each class:

𝑝𝑖 =
exp(𝑧𝑖 )∑𝐶
𝑗=1 exp(𝑧 𝑗 )

. (3)

For numerical stability and to prevent division by zero, these proba-
bilities are clipped to the interval [𝜖 = 10−6, 1− 𝜖]. The probability
corresponding to the correct class, denoted 𝑝𝑡 , is then computed
via

𝑝𝑡 =

𝐶∑︁
𝑖=1

𝑝𝑖 𝑦𝑖 . (4)

While the conventional cross-entropy loss is defined as
L𝐶𝐸 (𝑝𝑡 ) = − log(𝑝𝑡 ), (5)

the Focal Loss is expressed as
L𝐹𝐿 (𝑝𝑡 ) = −𝛼𝑡

(
1 − 𝑝𝑡

)𝛾 log(𝑝𝑡 ), (6)
where the parameter 𝛾 ≥ 0 (the focusing parameter) down-weights
the loss contribution of “easy” samples, and 𝛼𝑡 is a weighting factor
that addresses class imbalance.

In our implementation, for samples whose true label is class 0
(no walking-aid requirement), if the predicted class (determined
by the largest softmax output) is not 0, an additional penalty term
− log(𝑝0) is multiplied, where 𝑝0 is the predicted probability for
class 0. We create a mask to extract class 0 samples and, for those
misclassified, calculate this penalty. The penalty terms are averaged
over the selected samples and then scaled by a constant 𝜆. The
overall loss is defined as the sum of the Focal Loss and this additional
penalty:

L = L𝐹𝐿 + 𝜆L𝑝𝑒𝑛𝑎𝑙𝑡𝑦 . (7)
In this study, we set 𝜆 = 8.0.

This design is particularly effective in scenarios with pronounced
class imbalance or in applications where misclassifying a specific
class (class 0 in this example) has severe consequences. By augment-
ing the Focal Loss with an extra term that heightens sensitivity to
critical misclassification cases, the model is encouraged to learn
more discriminatively for high-risk classes, thereby improving over-
all classification performance.

We began with the ART library’s default configuration for the
AttributeInferenceBlackBox attack2, which uses a simple neural
network by default. Next, we made several customizations. First, we
replaced the out-of-the-box classifier with a deeper MLP network
consisting of four fully connected layers of sizes 512, 256, 128, and
64, followed by a final output layer matching the number of classes.
Each hidden layer is followed by a ReLU activation, batch normal-
ization, and dropout. Second, we replaced the original loss function
with the one we mentioned in this section. Third, we applied a
standard scaler to all input features and to the model’s predicted
values before feeding them into the attack network. Finally, we
adjusted the training loop to run for up to one hundred epochs
using the AdamW[14] optimizer with a learning rate of 0.0001, and
we implemented early stopping with a patience of five epochs based
2https://github.com/Trusted-AI/adversarial-robustness-toolbox

Figure 4: Addresses of the facility and users (the background
map has been altered to an unrelated location to protect
personal information).

on a minimum loss improvement threshold of 0.00005. We preserve
the model state that achieves the best validation loss. These updates
improve robustness when classes are imbalanced and increase the
attacker model’s confidence when inferring high-sensitivity classes.

5 EVALUATION
5.1 Dataset
In this study, we validate our approach using real pick-up and
drop-off data obtained from a specific care provider between Oc-
tober 1, 2023 and October 31, 2023, yielding 1,930 unique records.
The relative locations of the facility and its users are illustrated in
Figure 4.

5.2 Evaluation of Pickup Duration Prediction
Model

Figure 5 shows, for each sample, the true one-minute–granularity
travel time versus the predicted duration by the machine learning
model. Blue points correspond to training-data samples, and green
points correspond to test-data predictions. For the training data,
the mean absolute prediction error was 2.251 minutes; for the test
data, the mean absolute prediction error was 3.508 minutes. These
results indicate that even the decision tree–based model is some-
what overfitting to the training data. Figure 5b shows the analogous
scatter plot and regression lines obtained when the model is trained
on data excluding walking aid information. In this case, the mean
absolute prediction error rose to 2.853 minutes on the training set
and to 3.094 minutes on the validation set. A direct comparison
of these errors with those from Figure 5a suggests that including
walking aid data does, in fact, improve predictive accuracy to some
degree. In other words, the model’s performance degrades slightly
when walking ability features are omitted, which implies that there
is a nontrivial relationship between walking ability and predicted
pick-up/drop-off time.
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(a) Evaluation of pick-up/drop-off time prediction accuracy by the
model trained on data including walking aid information.
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(b) Evaluation of pick-up/drop-off time prediction accuracy by the
model trained on data excluding walking aid information.

Figure 5: Comparison of taxi arrival time prediction perfor-
mance for models trained with or without walking aid data.

5.3 Evaluation of Privacy Risks
In this study, the attacker determines whether an individual’s gait
capability is impaired, and the attack’s success rate is assessed
by the proportion of correct determinations. In real-world data,
there exists a continuum of impairment severity in walking ability;
however, in this work, we disregard that fine-grained variation
and focus our evaluation solely on inferring the binary presence or
absence of impairment. As an assumption, half of the true data is
used to train the black box attribute inference attack model, and
the remaining half is used to evaluate attribute inference risk.

Figure 6 and Table 1 show the attribute inference attack result
in a confusion matrix. First, as an overall trend, we observed that,
due to the original class imbalance, the model’s predictions were
heavily biased toward class 0 despite the incorporation of a penalty

Table 1: Attack Success Performance.

Case Precision Recall Accuracy F1-score
Figure. 6a 0.2000 0.6040 0.4442 0.3005
Figure. 6b 0.1608 0.2277 0.6125 0.1886
Figure. 6c 0.1754 0.0990 0.7299 0.1265

term. Although we introduced Focal Loss and related techniques,
this imbalance persisted for the following reasons. In the current
task of estimating transportation pickup time, we formulated the
problem as a classification problem for each minute. Even though
this formulation increased the number of features, we found no
sufficiently strong correlation among the walking aid indicator,
the estimated pickup time, and the other features that an attribute
inference attack could exploit. As a result, the model lacked the
information necessary for reliable inference. This conclusion is also
supported by the patterns observed in the UMAP visualization[2]
of the data in Figure 7. Moreover, it is well known that decision tree-
based methods are less prone to overfitting than complex neural
network-based methods and that this property makes decision trees
more resistant to attribute inference attacks.

We also examined scenarios in which the attacker applies data
augmentation via SMOTE[6] during the model’s training phase. In
our dataset, an intriguing observation emerged: when the prediction
model for transportation time (the target model) was trained in a
manner that corrected for class imbalance by data augmentation,
the attack’s success rate increased in terms of both precision (from
0.1608 to 0.1754, a relative increase of approximately 9.1 %) and
accuracy (from 0.6125 to 0.7299, a relative increase of approximately
19.2 %). This finding indicates that as the target model becomes
more generalized via data augmentation, it is more susceptible
to successful attacks. In other words, directly eliminating class
imbalance through data augmentation can render the model more
vulnerable to attribute-inference efforts.

6 CONCLUSION
In this study, we investigated whether users’ sensitive information
can be inferred from transportation data collected in collaboration
with a home-care provider. We trained a decision-tree model to pre-
dict transportation duration and then applied attribute-inference
attacks to evaluate its vulnerability. The experimental results in-
dicated that, because of the original class imbalance, the attack’s
overall success rate remained low; however, we also found that a
risk of data leakage persists. Moreover, we confirmed that data aug-
mentation can, under certain circumstances, increase the model’s
susceptibility to such attacks. Future work will examine how differ-
ent model architectures influence the attack success rate, explore
the relationship between overfitting and vulnerability, and assess
how varying levels of attacker knowledge affect attack efficacy. We
will also evaluate potential defense mechanisms, particularly differ-
ential privacy techniques that add calibrated noise during training
or in query responses to determine their effectiveness at mitigating
attribute-inference risks in eldercare transportation models.
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(a) Confusionmatrix for verifying attack suc-
cess when the taxi pickup-time prediction
model (Decision Tree) is trained on the origi-
nal data without SMOTE augmentation, and
the attack model is also trained on data with-
out SMOTE augmentation.

(b) Confusion matrix for verifying attack
success when the taxi pickup-time predic-
tion model (Decision Tree) is trained on the
original data without SMOTE augmentation,
but the attack model is trained on SMOTE-
augmented data.

(c) Confusionmatrix for verifying attack suc-
cess when the taxi pickup-time prediction
model (Decision Tree) is trained on SMOTE-
augmented data, and the attackmodel is also
trained on SMOTE-augmented data.

Figure 6: Confusion matrices used to verify the success of the attribute inference attack under each scenario.
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(a) Supervised UMAP projection of feature vectors, with each point
colored by the corresponding ride time in minutes. This visualiza-
tion reveals how samples cluster according to transit duration.

(b) Supervised UMAP projection of feature vectors, with each point
colored by walking aid category (0 = no aid, 1–4 = different types
of aid). This plot illustrates how the presence and type of walking
aid correlate with the learned embedding space.

Figure 7: UMAP[2] Visualizations.
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